Open Source AI For Everyone: Three Projects to Know
Sam Dean | 10 May 2018
At the intersection of open source and artificial intelligence, innovation is flourishing, and companies ranging from Google to Facebook to IBM are open sourcing AI and machine learning tools.
According to research from IT Intelligence Markets, the global artificial intelligence software market is expected to reach 13.89 billion USD by the end of 2022. However, talk about AI has accelerated faster than actual deployments. According to a detailed McKinsey report on the growing impact of AI, “only about 20 percent of AI-aware companies are currently using one or more of its technologies in a core business process or at scale.” Here, we look at three open source AI projects aimed at simplifying access to AI tools and insights.
TensorFlow
Google has open sourced a software framework called TensorFlow that it spent years developing to support its AI software and other predictive and analytics programs. TensorFlow is the engine behind several Google tools you may already use, including Google Photos and the speech recognition found in the Google app.
Google has also released two new AIY kits that let individuals easily get hands-on with artificial intelligence. Focused on computer vision, and voice assistants, the two kits come as small self-assembly cardboard boxes with all the components needed for use. The kits are currently available at Target in the United States, and, notably, are both based on the open source Raspberry Pi platform—more evidence of how much is going on at the intersection of open source and AI.
Sparkling Water
H2O.ai, formerly known as OxData, has carved out a niche in the machine learning and artificial intelligence arena, offering platform tools as well as Sparkling Water, a package that works with Apache Spark. H2O.ai’s tools, which you can access simply by downloading, operate under Apache licenses, and you can run them on clusters powered by Amazon Web Services (AWS) and others for just a few hundred dollars. Never before has this kind of AI-focused data sifting power been so affordable and easy to deploy.
Sparkling Water includes a toolchain for building machine learning pipelines on Apache Spark. In essence, Sparkling Water is an API that allows Spark users to leverage H2O’s open source machine learning platform instead of — or alongside — the algorithms that are included in Spark’s existing machine-learning library. H2O.ai has published several use cases for how Sparkling Water and its other open tools are used in fields ranging from genomics to insurance, demonstrating that organizations everywhere can now leverage open source AI tools.
H2O.ai’s Vinod Iyengar, who oversees business development at the company, says they are working to bring the power of AI to businesses. “Our machine learning platform features advanced algorithms that can be applied to specialized use cases and the wide variety of problems that organizations face,” he notes.
Just as open source focused companies such as Red Hat have combined commercial products and services with free and open source ones, H2O.ai is exploring the same model on the artificial intelligence front. Driverless AI is a new commercial product from H2O.ai that aims to ease AI and data science tasks at enterprises. With Driverless AI, non-technical users can gain insights from data, optimize algorithms, and apply machine learning to business processes. Note that, although it leverages tools with open source roots, Driverless AI is a commercial product.
Acumos
Acumos is another open source project aimed at simplifying access to AI. Acumos AI, which is part of the LF Deep Learning Foundation, is a platform and open source framework that makes it easy to build, share, and deploy AI apps. According to the website, “It standardizes the infrastructure stack and components required to run an out-of-the-box general AI environment. This frees data scientists and model trainers to focus on their core competencies and accelerates innovation.”
The goal is to make these critical new technologies available to developers and data scientists, including those who may have limited experience with deep learning and AI. Acumos also has a thriving marketplace where you can grab and deploy applications.
“An open and federated AI platform like the Acumos platform allows developers and companies to take advantage of the latest AI technologies and to more easily share proven models and expertise,” said Jim Zemlin, executive director at The Linux Foundation. “Acumos will benefit developers and data scientists across numerous industries and fields, from network and video analytics to content curation, threat prediction, and more.” You can learn more about Acumos here.
Similar Articles
Browse Categories
Cloud Computing Compliance and Security Open Source Projects 2024 LF Research Linux How-To Blog Open Source Ecosystem and Governance Diversity & Inclusion Research Data, AI, and Analytics Newsletter linux blog Training and Certification Linux Cross Technology software development Cloud Native Computing Foundation cybersecurity Announcements Decentralized Technology Legal OpenSearch Sustainability and Green Initiatives cloud native generative AI industries lf events Finance and Business Technology Networking and Edge cncf AI/ML Emerging Technology Health and Public Sector Interoperability Kubernetes Topic: Security Web Application & Development amazon web services aws community tools confidential computing challenges decentralized AI decentralized computing eBPF funding innovation investment japan spotlight kernel learning lg blog license compliance open standards openssf ospo research survey skills development state of open source tech talent transformation