
2017
Linux Kernel
Development
Report
Jonathan Corbet, LWN.net
Greg Kroah-Hartman, The Linux Foundation

Table of Contents
Summary 1
Introduction 2
Some development highlights since 4.7 3
Development model 5
Kernel source size 9
Who is doing the work 11
Who is sponsoring the work 14
Bringing in new developers 17
Who is reviewing the work 20
Bug reporting 23
Lessons from 26 years of Linux 25
Conclusion 28

2017 LINUX KERNEL DEVELOPMENT REPORT 2

Summary
Linux has come to dominate the open source software world as one of the most successful
collaborative development projects in history. As it grows, Linux also comes to dominate
nearly every market it enters, including cloud, mobile, embedded, and supercomputing.

As of 2017, the Linux operating system runs 90 percent of the public
cloud workload, has 62 percent of the embedded market share, and 99
percent of the supercomputer market share. It runs 82 percent of the
world’s smartphones and nine of the top ten public clouds. However, the
sustained growth of this open source ecosystem and the amazing
success of Linux in general would not be possible without the steady
development of the Linux kernel.

The Linux kernel, which forms the core of the Linux system, is the result
of one of the largest cooperative software projects ever attempted. Regular
releases every nine to ten weeks deliver stable updates to Linux users, each
with significant new features, added device support, and improved performance.
The rate of change in the kernel is high and increasing, with over 12,000
patches going into each recent kernel release. Each of these releases contains
the work of over 1,600 developers representing over 200 corporations.

Since 2005, some 15,600 individual developers from over 1,400
different companies have contributed to the kernel. The Linux kernel has

become a common resource developed on a massive scale by companies
which are fierce competitors in other areas.

This is the eighth in a series of regular updates to this document, which
has been published roughly annually since 2008. It covers development
through the 4.13 release (which came out on September 3, 2017), with
an emphasis on the releases (4.8 to 4.13) made since the last update. It
has been a typically busy period, with six kernel releases created over a
period of about 14 months, many significant changes made, and
continual growth of the kernel developer and user community.

The Linux kernel is not a young project; it just celebrated its 26th
anniversary. The software world is one of constant change, and today’s
hot system often doesn’t last past tomorrow, but Linux, after more than a
quarter of a century, is going stronger than ever. Clearly, the kernel
developers are doing something right. This report provides an update
into what those developers have been doing and why they continue to
be successful.

2017 LINUX KERNEL DEVELOPMENT REPORT 1

Introduction
The Linux kernel is the lowest level of software running on
a Linux system. It is charged with managing the hardware,
running user programs, and maintaining the overall security
and integrity of the whole system.

It is this kernel which, after its initial release by Linus Torvalds in 1991,
jump-started the development of Linux as a whole. The kernel is a
relatively small part of the software on a full Linux system (many other
large components come from the GNU project, the GNOME and KDE
desktop projects, the X.org project, and many other sources), but it is the
core which determines how well the system will work and is the piece
which is truly unique to Linux.

The Linux kernel is an interesting project to study for a number of reasons. It
is one of the largest individual components on almost any Linux system.
It also features one of the fastest-moving development processes and
involves more developers than any other open source project. Since
2005, kernel development history is also quite well documented, thanks
to the use of the Git source code management system.

2017 LINUX KERNEL DEVELOPMENT REPORT 2

Some development
highlights since 4.7
The kernel development community
remains extremely busy, as will be seen
in the statistics shown on the following
pages. Some of the highlights from the
period since the 4.7 release include:

Changesets merged
Just under 83,000 changesets have been merged from 4,319
individual developers representing 519 corporations (that we know
about). The number of changesets per release (in other words, the
rate of change of the kernel) and number of developers have both
increased from the previous report; the number of companies
involved remains steady.

New features merged
As usual, a wide array of new
features has been merged during
this time period, including:

• The transparent huge page
feature now works with
file-backed pages as well as
program-data pages, leading
to much more efficient use
of memory.

• The kernel’s documentation
system was replaced with a
new toolchain backed by
Sphinx; work continues to
better organize and enhance
our documentation.

• The kernel’s core timer
mechanism was replaced with
a far more efficient
implementation.

• The “express data path”
mechanism in the networking
stack enables high-speed
packet processing with
user-loaded BPF programs.

• The BBR congestion-control
algorithm will improve
networking performance in a
number of settings.

• Support for Intel’s cache-
allocation technology gives
better control over performance
for both enterprise and
realtime workloads.

• The swapping subsystem has
greatly improved scalability —
important now that
persistent-memory devices
can be used for swapping.

• Support for persistent memory,
which may fundamentally
change what we can do with
our computers, has been
greatly improved in general.

• The long-awaited statx()
system call is now available.

• The BFQ and Kyber block I/O
schedulers provide better
performance for a wide
variety of I/O workloads.

• The new TEE framework
facilitates the use of trusted
execution environments on
ARM processors.

• The in-kernel TLS
implementation allows the
offloading of encrypted
network streams.

2017 LINUX KERNEL DEVELOPMENT REPORT 3

http://www.sphinx-doc.org/en/stable/

New drivers
Naturally, the kernel developers also added hundreds of new drivers and
thousands of fixes over the past year.

Hardening
Work on hardening the kernel against attack continues with the addition
of several new technologies, many of which have their origin in the
grsecurity and PaX patch sets. New hardening features include virtually
mapped kernel stacks, the use of the GCC plugin mechanism for
structure-layout randomization, the hardened usercopy mechanism, and
a new reference-count mechanism that detects and defuses reference-
count overflows. Each of these features makes the kernel more resistant
to attack.

Testing
The kernel testing infrastructure continues to improve. The “zero-day
build and boot robot” system alone found 223 bugs (all of which were
fixed) during this period. The in-kernel self-test framework continues to
develop and will someday be a comprehensive test suite for the kernel.

Record numbers
The 4.9 development cycle was the busiest in the kernel’s history with
regard to the number of changes merged. 4.12, instead, set a new record
for both the number of developers involved and the number of first-time
contributors. After all these years, the kernel development community is
still growing.

Above and beyond all of that, though, the process of developing the
kernel and making it better continued at a fast pace. The remainder of
this report will concern itself with the health of the development process
and where all that code came from.

“I enjoy the work. It’s
challenging and fun, plus
there’s a personal
gratification knowing that
your code is running on
billions of devices.”

- Jens Axboe, Software engineer,
Facebook

2017 LINUX KERNEL DEVELOPMENT REPORT 4

Development model
Linux kernel development proceeds under
a loose, time-based release model, with a
new major kernel release occurring every
nine or ten weeks.

This model, which was first formalized in 2005, gets new features into
the mainline kernel and out to users with a minimum of delay. That, in
turn, speeds the pace of development and minimizes the number of
external changes that distributors need to apply. As a result, most
distributor kernels contain relatively few distribution-specific changes;
this leads to higher quality and fewer differences between distributions.

After each mainline release, the kernel’s “stable team” (currently led by
Greg Kroah-Hartman) takes up short-term maintenance, applying
important fixes as they are developed. The stable process ensures that
important fixes are made available to distributors and users and that they
are incorporated into future mainline releases as well. In recent years, we
have seen an increasing number of cooperative industry efforts to
maintain specific kernels for periods of one year or more.

Release frequency
The desired release period for a major kernel release is, by common
consensus, eight to twelve weeks. A much shorter period would not give

testers enough times to find
problems with new kernels, while a
longer period would allow too much
work to pile up between releases.
Over the years, the length of the
development cycle has stabilized at
nine or ten weeks, making kernel
releases quite predictable. This can
be seen in the release history since
4.7, at right.

Whether a development cycle requires nine or ten weeks is partially dependent
on how quickly the kernel stabilizes; sometimes an extra week is required
tochase down some final issues. In other cases, as happened with 4.10, the
extra week is added to avoid opening a new merge window during an
inconvenient time (when key developers are traveling, for example).

The trend toward shorter, more predictable release cycles is almost
certainly the result of improved discipline both before and during the
development cycle: higher-quality patches are being merged, and the
community is doing a better job of fixing regressions quickly. The
increased use of automatic testing tools is also helping the community to
find (and address) problems more quickly.

Rate of Change
When preparing work for submission to the Linux kernel, developers break
their changes down into small, individual units, called “patches.” These
patches usually do only one thing to the source code; they are built on
top of each other, modifying the source code by changing, adding, or
removing lines of code. Each patch should, when applied, yield a kernel
which still builds and works properly. This discipline forces kernel developers

Kernel
Version

Release
Date

Days of
Development

4.8 2016-10-02 70

4.9 2016-12-11 70

4.10 2017-02-19 70

4.11 2017-04-30 70

4.12 2017-07-02 63

4.13 2017-09-03 63

2017 LINUX KERNEL DEVELOPMENT REPORT 5

to break their changes down into
small, logical pieces; as a result,
each change can be reviewed for
code quality and correctness. One
other result is that the number of
individual changes that go into
each kernel release is large and
increasing, as can be seen in the
table at left.

It was an exceedingly busy year for the kernel development community,
with almost 83,000 patches merged overall. The 4.9 development cycle
was the busiest in the kernel project’s history, partly as a result of the
merging of the greybus infrastructure. 4.12, meanwhile, is the second-
busiest cycle ever.

By taking into account the amount of time required for each kernel
release, one can arrive at the number of changes accepted into the
kernel per hour. The results can be seen in at far right.

Over the entire 406-day period covered by this report, the community
merged changes at an average rate of 8.5 patches/hour — a significant
increase from the 7.8 patches per hour noted in the previous report. The
4.9 and 4.12 development cycles featured the highest patch rates ever
seen in the history of the kernel project.

It is worth noting that the above figures understate the total level of
activity; most patches go through a number of revisions before being
accepted into the mainline kernel, and many are never accepted at all.
The ability to sustain this rate of change for years is unprecedented in
any previous public software project.

Stable updates
Kernel development does not stop with a mainline release. Inevitably,
problems will be found in released kernels, and patches will be made to
fix those problems. The stable kernel update process was designed to
capture those patches in a way that ensures that both the mainline kernel
and current releases are fixed. These stable updates are the base from
which most distributor kernels are made.

Kernel Version Changes per hour

4.8 7.97

4.9 9.65

4.10 7.63

4.11 7.57

4.12 9.64

4.13 8.60

Kernel Version Changes (patches)

4.8 13,382

4.9 16,214

4.10 13,029

4.11 12,724

4.12 14,570

4.13 13,006

2017 LINUX KERNEL DEVELOPMENT REPORT 6

The recent stable kernel update history looks like this:

The normal policy for stable
releases is that each kernel will
receive stable updates for a
minimum of one development
cycle (actually, until the -rc1
release of the second cycle
following the initial release). About
once each year, one release is
chosen to receive updates for an
extended, two-year period; as of
this writing, the and 4.4 and 4.9
kernels are being maintained in
this manner. The 3.18 kernel is

used in many mobile devices and is receiving extended maintenance for
now. The next long-term support kernel is expected to be 4.14.

It is worth noting that several other kernel releases have been adopted for
stable maintenance outside of the normal stable process. The purpose and

scope of these long-term kernels varies. The oldest of these long-term
releases is currently 3.2, maintained by Debian kernel developer Ben
Hutchings; it has had 94 releases incorporating 8,092 fixes.

One might wonder why Linux kernel releases require hundreds or even
thousands of fixes after they are declared “finished.” There are many
problems that are tied to specific hardware or workloads that the developers
have no access to. So there will always be issues that come up once a kernel
is made available and receives wider testing. Despite the progress that has
been made in kernel testing, the community will always be dependent on its
users to run tests and report problems.

In the end, most Linux users are running a kernel based off one of the stable
updates; to do otherwise would be to miss out on large numbers of
important fixes. The stable update series continues to prove its value by
allowing the final fixes to be made to released kernels while, simultaneously,
letting mainline development move forward.

Kernel Updates Fixes

3.18 76 5,264

4.4 93 5,579

4.8 17 1,086

4.9 57 4,035

4.10 17 1,122

4.11 12 982

4.12 14 827

4.13 8 556

2017 LINUX KERNEL DEVELOPMENT REPORT 7

Laura Abbott
Fedora Kernel Engineer, Red Hat

What’s your role?
My full time job is working as one of two maintainers for the Fedora
kernels. This means I push out kernel releases and fix/shepherd bugs.
Outside of that role, I maintain the Ion memory management framework
and do occasional work on arm/arm64 and KSPP (kernel hardening)

What does the kernel community need to work on?
As a general theme, there needs to be a focus on scaling the community.
There’s always an ongoing discussion about how to attract new
developers and there’s been a recent focus on how to grow contributors
into maintainers. I’d like to see the kernel community continue to make
processes easier for new and existing developers. I’d also like to see the
discussions about building an inclusive community continue.

Why do you contribute?
I’ve always found low level systems fascinating and enjoy seeing how all
the pieces work together. There’s always something new to learn about
in the kernel and I find the work challenging.

Jens Axboe
Software engineer, Facebook

What’s your role?
I’m the Linux block layer maintainer, so I primarily develop features in
that area, as well as help review and guide others doing the same.

What does the kernel community need to work on?
Attracting more young talent. Most young folks these days gravitate
towards product instead of infrastructure. It’s important that we bring
new talent into the fold.

Why do you contribute?
First of all, because I enjoy the work. It’s challenging and fun, plus there’s
a personal gratification knowing that your code is running on billions of
devices. Finally, it’s my job.

2017 LINUX KERNEL DEVELOPMENT REPORT 8

Version Files Lines

4.8 55,472 22,070,760

4.9 56,201 22,348,062

4.10 57,167 22,839,361

4.11 57,959 23,137,101

4.12 59,801 24,170,555

4.13 60,538 24,766,703

For the following numbers, we
have counted everything in the
released Linux source package
as “source code” even though a
small percentage of the total is
the scripts used to configure
and build the kernel, as well as
a fair amount of documentation.
Those files, too, are part of the
larger work, and thus merit
being counted.

The information in the table above shows the number of files and lines in
each kernel version.

The kernel has grown steadily since its first release in 1991, when there
were only about 10,000 lines of code. At almost 25 million lines (up from
nearly 22 million), the kernel is almost three million lines larger than it was at
the time of the previous version of this report. Another way of putting this is
that, in the production of the 4.8 to 4.13 releases, the kernel community
added just over 15 files and nearly 7,500 lines of code — every day.

Kernel source size
The Linux kernel keeps growing in size over time as more
hardware is supported and new features are added.

2017 LINUX KERNEL DEVELOPMENT REPORT 9

Arnd Bergmann
Linaro

What’s your role?
I co-maintain the arm-soc kernel tree together with Olof Johansson. This
is where all the platform specific changes for ARM processors and SoCs
(both 32-bit and 64-bit) get merged. This is one of the larger subsystems
in the kernel, and it interacts with most driver subsystems.

I also maintain a couple of smaller things in the kernel. In particular, I look
after new CPU architectures getting merged into the kernel and the
associated include/asm-generic/ directory.

One of my long-term projects is to fix the time_t overflow in the kernel,
which will cause 32-bit code to fail in the year 2038.

What have you been working on recently?
Aside from my maintainer work, I have spent a lot of time during the last
year on fixing hundreds of smaller bugs that lead to build failures or
warnings. I started doing a lot of build-testing as a way to improve the
quality of contributions I merge into the kernel from other people, but
this has now turned into a separate effort to get all random
configurations to build cleanly.

Mauro Carvalho Chehab
Open Source Director, Samsung Research Brazil

What’s your role?
I’m responsible for the Open Source efforts at Samsung Research Brazil,
as part of Samsung’s Open Source Group. I maintain the media and
EDAC (Error Detection and Correction) Kernel subsystems.

What have you been working on this year?
This year, I did a lot of patches that improve Linux documentation. A lot
of them were related to the conversion from the XML-based DocBook
docs to a markup language (Restructured Text). Thanks to that, no
documents use the legacy document system anymore. I also finally closed
the documentation gap at the DVB API, with was out of sync for more
than 10 years! I also did several bug fixes at the media subsystem, including
the 4.9 breakage of many drivers that were doing DMA via stack.

Why do you contribute?
Because it is fun! Seriously, I strongly believe that the innovation process
in computer engineering are currently driven by Linux. Working on its
Kernel has provided me the opportunity of working with great developers
and helping to improve a cutting edge operating system.

2017 LINUX KERNEL DEVELOPMENT REPORT 10

Who is doing the work

The number of different developers who are doing Linux kernel
development and the identifiable companies who are sponsoring this
work have been increasing over the different kernel versions, as can be
seen in the following table.

These numbers show a
continuation of the steady
increase in the number of
developers contributing to each
kernel release, with an all-time
record being set with the 4.12
release.

Since the beginning of the git era
(the 2.6.11 release in 2005), a

total of 15,637 developers have contributed to the Linux kernel; those
developers worked for a minimum of 1,513 companies. The number of
companies supporting work on the kernel appears to be stable and not
growing like the number of developers — but the 273 companies
observed to have supported work on 4.10 was an all-time record.

Despite the large number of individual developers, there is still a
relatively small number who are doing the majority of the work. In any
given development cycle, approximately one-third of the developers
involved contribute exactly one patch. Since the 2.6.11 release, the top
10 developers together have contributed 45,338 changes — almost 7.1
percent of the total. The top 30 developers contributed just under 16
percent of the total. Those developers are listed here.

Version Developers Companies

4.8 1,597 262

4.9 1,729 270

4.10 1,680 273

4.11 1,741 268

4.12 1,821 274

4.13 1,681 225

Name Changes %
H Hartley Sweeten 6,034 0.9%
Al Viro 5,904 0.9%
Takashi Iwai 5,089 0.8%
Mauro Carvalho Chehab 5,039 0.8%
David S. Miller 4,044 0.6%
Johannes Berg 4,014 0.6%
Mark Brown 3,978 0.6%
Tejun Heo 3,951 0.6%
Russell King 3,692 0.6%
Greg Kroah-Hartman 3,593 0.6%
Thomas Gleixner 3,582 0.6%
Christoph Hellwig 3,498 0.5%
Hans Verkuil 3,419 0.5%
Ingo Molnár 3,128 0.5%
Chris Wilson 3,090 0.5%
Arnd Bergmann 3,071 0.5%
Geert Uytterhoeven 3,011 0.5%
Dan Carpenter 2,994 0.5%
Eric Dumazet 2,988 0.5%
Joe Perches 2,937 0.5%
Alex Deucher 2,757 0.4%
Daniel Vetter 2,688 0.4%
Laurent Pinchart 2,687 0.4%
Axel Lin 2,670 0.4%
Trond Myklebust 2,554 0.4%
Ben Skeggs 2,516 0.4%
Arnaldo Carvalho de Melo 2,456 0.4%
Bartlomiej Zolnierkiewicz 2,331 0.4%
Kuninori Morimoto 2,300 0.4%
Linus Walleij 2,281 0.4%

Top 30 kernel developers,
2.6.11– 4.13

2017 LINUX KERNEL DEVELOPMENT REPORT 11

The numbers in the previous table
are drawn from the entire git
repository history, starting with
2.6.12. If we look at the commits
since the last version of this
report (4.7) through 4.13, the
picture is somewhat different.

Note that many senior kernel
developers, Linus Torvalds
included, do not show up on
these lists. These developers
spend much of their time getting
other developers’ patches into the
kernel; this work includes
reviewing changes and routing
accepted patches toward the
mainline. We will look more
closely at that work below.

Name Changes %
Chris Wilson 1,519 1.8%
Mauro Carvalho Chehab 1,096 1.3%
Johan Hovold 911 1.1%
Arnd Bergmann 872 1.1%
Christoph Hellwig 801 1.0%
Geert Uytterhoeven 551 0.7%
Viresh Kumar 550 0.7%
Colin Ian King 539 0.6%
Ville Syrjälä 494 0.6%
Wei Yongjun 493 0.6%
Greg Kroah-Hartman 476 0.6%
Al Viro 471 0.6%
Daniel Vetter 464 0.6%
Dan Carpenter 432 0.5%
Masahiro Yamada 429 0.5%
Kuninori Morimoto 428 0.5%
Markus Elfring 427 0.5%
Alex Deucher 417 0.5%
Linus Walleij 404 0.5%
Javier Martinez Canillas 384 0.5%
Takashi Iwai 366 0.4%
Eric Dumazet 355 0.4%
Wolfram Sang 352 0.4%
Andy Shevchenko 351 0.4%
Thomas Gleixner 349 0.4%
Arnaldo Carvalho
de Melo 349 0.4%

Alex Elder 345 0.4%
David Howells 342 0.4%
Hans de Goede 333 0.4%
Florian Fainelli 323 0.4%

Top 30 kernel developers,
4.8–4.13

“I contribute to the Linux kernel because it is fun.
While it is difficult for a single company to employ
all the smartest people, I can reach out to the
kernel development mailing list to debate and
collaborate with world class talent. The debates
inevitably make progress because we are always
unified by the common principle of doing what is
best for the long term health of the project. I grow
and learn something new almost every time I
make a contribution.”

 - Dan Williams, Software Engineer, Intel

2017 LINUX KERNEL DEVELOPMENT REPORT 12

Kees Cook
Software Engineer, Google

What’s your role?
Recently, I organized the Kernel Self-Protection Project (KSPP), which has
helped focus lots of other developers to work together to harden the
kernel against attack. I’m also the maintainer of seccomp, pstore, LKDTM,
and gcc-plugin subsystems, and a co-maintainer of sysctl.

What does the kernel community need to work on?
I think we’ve got a lot of work ahead in standardizing the definitions of
syscalls and continuing to identify and eliminate error-prone code
patterns. Doing these kinds of tree-wide changes continues to be quite a
challenge for contributors because the kernel development model tends
to focus on per-subsystem development.

Why do you contribute?
I’ve always loved working with low-level software, close to the hardware
boundary. I love the challenges it presents. Additionally, since Linux is
used in all corners of the world, it’s hard to find a better project to contribute
to that has such an impact on so many people’s lives.

Thomas Gleixner
CTO, Linutronix GmbH

What’s your role?
I serve various maintainer roles. The x86 architecture, the generic
interrupt subsystem, and the time(r) subsystem.

What does the kernel community need to work on?
Aside of the technical challenges, which are hard to predict, we need
more effort on code cleanup and consolidation along with more capacity
for reviews.

Why do you contribute?
First of all it’s fun, and I strongly believe that FOSS is the right way to go,
but I freely admit that I also do it to earn my living.

2017 LINUX KERNEL DEVELOPMENT REPORT 13

Who is sponsoring the work
The Linux kernel is a resource which is used by a large variety
of companies.

Many of those companies never participate in the development of the
kernel; they are content with the software as it is and do not feel the
need to help drive its development in any particular direction. But, as can
be seen in the table above, an increasing number of companies are
working toward the improvement of the kernel.

Below we look more closely at the companies which are employing kernel
developers. For each developer, corporate affiliation was obtained through
one or more of: the use of company email addresses, sponsorship information
included in the code they submit, or simply asking the developers
directly. The numbers presented are necessarily approximate; developers
occasionally change employers, and they may do personal work out of
the office. But they will be close enough to support a number of conclusions.

There are a number of developers for whom we were unable to determine a
corporate affiliation; those are grouped under “unknown” in the table at right
With few exceptions, all of the people in this category have contributed
10 or fewer changes to the kernel over the past three years, yet the large
number of these developers causes their total contribution to be quite high.

The category “none,” instead, represents developers who are known to
be doing this work on their own, with no financial contribution happening
from any company.

The most active companies over the 4.8 to 4.13 development cycles are
listed here.

Company Changes %
Intel 10,833 13.1%
none 6,819 8.2%
Red Hat 5,965 7.2%
Linaro 4,636 5.6%
unknown 3,408 4.1%
IBM 3,359 4.1%
consultants 2,743 3.3%
Samsung 2,633 3.2%
SUSE 2,481 3.0%
Google 2,477 3.0%
AMD 2,215 2.7%
Renesas Electronics 1,680 2.0%
Mellanox 1,649 2.0%
Oracle 1,402 1.7%
Huawei Technologies 1,275 1.5%
Broadcom 1,267 1.5%
ARM 1,256 1.5%
Texas Instruments 1,136 1.4%
Free Electrons 969 1.2%
NXP Semiconductors 839 1.0%
Canonical 805 1.0%
Facebook 771 0.9%
Imagination
Technologies 669 0.8%

Cavium 664 0.8%
Code Aurora Forum 648 0.8%
Outreachy 633 0.8%
BayLibre 615 0.7%
NVidia 579 0.7%
linutronix 565 0.7%
Rockchip 507 0.6%

Top companies
contributing to the Linux
kernel, 4.8– 4.13

2017 LINUX KERNEL DEVELOPMENT REPORT 14

The top 10 contributors, including the groups “unknown” and “none,”
make up just over 54 percent of the total contributions to the kernel;
that is up slightly from the previous version of this report. It is worth
noting that, even if one assumes that all of the “unknown” contributors
are working on their own time, well over 85 percent of all kernel
development is demonstrably done by developers who are being paid for
their work.

Interestingly, the volume of contributions from unpaid developers has
been in slow decline for many years. It was 14.6 percent in the 2012
version of this report, but is 8.2 percent this time around. There are many
possible reasons for this decline, but, arguably, the most plausible of
those is quite simple: kernel developers are in short supply, so anybody
who demonstrates an ability to get code into the mainline tends not to
have trouble finding job offers. Indeed, the bigger problem can be
fending those offers off. As a result, volunteer developers tend not to
stay that way for long.

What we see here is that a small number of companies is responsible for
a large portion of the total changes to the kernel. But there is a “long tail”
of companies (nearly 500 of which do not appear in the above list) which
have made significant changes since the 4.7 release. There may be no
other examples of such a large, common resource being supported by
such a large group of independent actors in such a collaborative way.

“I’ve always found low level systems fascinating
and enjoy seeing how all the pieces work
together. There’s always something new to learn
about in the kernel and I find the work
challenging.”

 - Laura Abbott, Fedora Kernel Engineer,
Red Hat

2017 LINUX KERNEL DEVELOPMENT REPORT 15

2017 LINUX KERNEL DEVELOPMENT REPORT 16

Shuah Khan
Sr. Linux Kernel Developer, Samsung Research America

What’s your role?
I’m a contributor, maintainer, and I serve on the Linux Foundation
Technical Advisory Board. I maintain the Linux Kernel Selftest framework
and USB-over-IP driver. I also contribute to the Linux Media, Power
Management, IOMMU, and DMA areas.

What have you been working on recently?
My main focus this year has been Exynos platform upstream stability, Kselftest
framework and individual tests. I contributed to improving the quality of media
subsystem core, and media and drm drivers on Exynos platform. I enhanced and
improved the Kselftest framework by adding support for the Test Anything
Protocol and object relocation. And I boot tested stable kernel release candidates
and maintained the Kselftest and USB-over-IP drivers.

What does the kernel community need to work on?
The Linux Kernel community should continue its focus on adding support
for new hardware, harden the security, and improve quality. Focusing on
effective ways to proactively detect security vulnerabilities, race
conditions, and hard to find problems will help achieve the above goals.

Julia Lawall
Senior Researcher, Inria

What’s your role?
I work on the tool Coccinelle that is used to find bugs in the Linux kernel
and perform large-scale evolutions. I also coordinate the Linux kernel
projects for the Outreachy internship program.

What have you been working on recently?
This year I have been working with Bhumika Goyal on making various
kernel structures read-only, supported in part by the Core Infrastructure
Initiative (CII). I have also been working on automatically identifying
patches that should be considered for backporting to stable kernels, in
collaboration with Greg KH, Sasha Levin, and colleagues at Singapore
Management University. Our approach is still work in progress, but
several hundred commits that were not originally tagged for stable have
been identified and applied to stable versions.

Why do you contribute?
Many reasons: the potential impact, the challenge of understanding a
huge code base of low-level code, the chance to interact with a
community with a very high level of technical skill.

Bringing in new
developers
The decline in volunteer developers
mentioned in the previous section is
potentially a cause for concern.

Many, if not most, of the current development community started that
way, after all; might a shortage of volunteers lead to a shortage of kernel
developers in the future? The situation is worth watching, but there are a
number of reasons to not worry too much about it at this time. The first
of those was mentioned above: successful volunteers tend not to stay
volunteers for long; why do the work for free when somebody is willing
to pay for it? But there is more to the story than that.

Over the course of kernel develop-
ment since the use of Git began,
each kernel release has included
contributions from 200-300 develop-
ers who had never put a patch into
the kernel before. Outliers include
2.6.25 (333 new developers) and
2.6.20 (169 new developers). For
the time period covered by this
report, the history is at left.

That adds up to 1,670 first-time developers over the course of just under
13 months. Remember that 4,319 developers overall contributed to the
kernel during this time; one can thus conclude that over one-third of
them were contributing for the first time. Many of those developers will
get their particular fix merged and never be seen again, but others will
become permanent members of the kernel development community.

Of those 1,670 new developers,
266 were known to be working on
their own time, while we have not
yet been able to get information on
405 of them. The rest of the new
developers (999, representing 60
percent of the total) were already
working for a company when they
contributed their first patch to the
kernel. The companies that have
been most active in bringing new
developers into the community are
shown at right.

The bottom line is that, even if all of
the unknowns were volunteers,
more than half of our new
developers are paid to work on the kernel from their very first patch. In
other words, companies working in this area have realized that one of the
best ways to find new kernel development talent is to develop it in-
house. So, for many developers, employment comes first, and it is no
longer necessary to put in time as a volunteer developer. This fact, too,
can explain the decrease in volunteers over time while simultaneously
showing that the community as a whole remains healthy.

Release New Developers

4.8 235

4.9 300

4.10 261

4.11 280

4.12 331

4.13 263

Company New Developers

Intel 128

Google 58

Huawei
Technologies 33

Code Aurora
Forum 33

IBM 31

Mellanox 28

AMD 26

Samsung 24

NXP
Semiconductors 21

Cavium 20

2017 LINUX KERNEL DEVELOPMENT REPORT 17

The most popular area for new developers to make their first patch is the
“staging tree,” a place for device drivers that have not yet reached
sufficient quality to merit inclusion in the kernel proper. One of the
reasons for the creation of staging was to make life easy for beginning
developers who want to make simple improvements to the code; this
result suggests that it has been successful in that goal.

Beyond staging, the most popular parts of the kernel for new developers
include networking (both the networking core and networking drivers),
documentation (which has seen a significant increase recently, suggesting
that recent efforts to make kernel documentation more accessible are
having an effect), graphics drivers, USB drivers, and the audio subsystem.

“I strongly believe that the innovation process in computer
engineering is currently driven by Linux. Working on its kernel
has provided me the opportunity of working with great developers
and helping to improve a cutting edge operating system.”

 - Mauro Carvalho Chehab, Open Source Director, Samsung Research Brazil

“I contribute to the kernel for
many reasons: the potential
impact, the challenge of
understanding a huge code
base of low-level code, the
chance to interact with a
community with a very high
level of technical skill.”

 - Julia Lawall, Senior Researcher,
Inria

2017 LINUX KERNEL DEVELOPMENT REPORT 18

David Miller
Consulting Engineer, Red Hat Inc.

What’s your role?
I am the top-level maintainer of the networking subsystem and the
Sparc port.

What have you been working on recently?
I removed UFO from the networking code.

Why do you contribute?
I’m locked in a room, and not allowed to leave. Sometimes they push
some food underneath the door.

Andrew Morton
Member of Technical Staff - Engineering, Google

What’s your role?
Mainly maintenance of the memory management subsystem. I also act as
a maintainer of last resort for subsystems which don’t have a current maintainer.

What does the kernel community need to work on?
I think we’re doing OK, so largely steady-as-she-goes. I continue to worry
that the kernel is becoming more and more complex and hence less and
less approachable for new developers. I wish we’d be more careful about
decreasing the technical barriers as we go about our day-to-day development.

Why do you contribute?
It’s what I do, and I like to think that my little efforts are helping people
and organizations.

Steven Rostedt
Open Source Programmer, VMware

What’s your role?
I’m an Open Source advocate and try to communicate to people what that
means. I maintain the Real Time Stable releases, and the Ftrace (Linux kernel
tracer) subsystem. I’m on The Linux Foundation’s Technical Advisory Board.

What does the kernel community need to work on?
I think more focus should be on eBPF and helping it be easier to use as
well as having an eye on security. Running a VM within the kernel can be
very dangerous, and people need to use caution and be extra careful
during development.

Why do you contribute?
Because it is the one place that you have total control over your computer.

2017 LINUX KERNEL DEVELOPMENT REPORT 19

2017 LINUX KERNEL DEVELOPMENT REPORT 20

Who is reviewing
the work
Patches do not normally pass directly into
the mainline kernel; instead, they pass
through one of over 100 subsystem trees.

Each subsystem tree is dedicated to a specific part of the kernel
(examples might be SCSI drivers, x86 architecture code, or networking)
and is under the control of a specific maintainer. When a subsystem
maintainer accepts a patch into a subsystem tree, he or she will attach a
“Signed-off-by” line to it. This line is a statement that the patch can be
legally incorporated into the kernel; the sequence of signoff lines can be
used to establish the path by which each change got into the kernel.

An interesting (if approximate) view of kernel development can be had by
looking at signoff lines, and, in particular, at signoff lines added by
developers who are not the original authors of the patches in question.
These additional signoffs are usually an indication of review by a
subsystem maintainer. Analysis of signoff lines gives a picture of who
admits code into the kernel — who the gatekeepers are.

Since 4.7, the developers who added the most non-author signoff lines
are at right.

Developer Signoffs %
David S. Miller 9,032 11.6%
Greg Kroah-Hartman 8,416 10.8%
Mark Brown 2,289 2.9%
Andrew Morton 2,099 2.7%
Mauro Carvalho
Chehab 1,997 2.6%

Alex Deucher 1,732 2.2%
Ingo Molnár 1,718 2.2%
Martin K. Petersen 1,482 1.9%
Kalle Valo 1,294 1.7%
Jens Axboe 1,226 1.6%
Doug Ledford 1,216 1.6%
Michael Ellerman 1,184 1.5%
Linus Walleij 979 1.3%
Jonathan Cameron 901 1.2%
Arnaldo Carvalho
de Melo 889 1.1%

Rafael J. Wysocki 860 1.1%
Herbert Xu 847 1.1%
Thomas Gleixner 786 1.0%
Daniel Vetter 766 1.0%
Ulf Hansson 715 0.9%

Company Signoffs %
Red Hat 16,132 20.6%
Intel 7,589 9.7%
Linux Foundation 7,110 9.1%
Linaro 6,158 7.9%
Google 5,750 7.4%
none 3,073 3.9%
Samsung 2,938 3.8%
IBM 2,391 3.1%
SUSE 1,879 2.4%
AMD 1,838 2.4%
Oracle 1,791 2.3%
Facebook 1,563 2.0%
Code Aurora Forum 1,532 2.0%
Mellanox 1,375 1.8%
Free Electrons 1,223 1.6%
ARM 991 1.3%
unknown 916 1.2%
linutronix 867 1.1%
Renesas Electronics 786 1.0%
Cisco 736 0.9%

The total number of patches signed off by Linus Torvalds (207, or 0.3
percent of the total) continues its long-term decline. That reflects the
increasing amount of delegation to subsystem maintainers who do the
bulk of the patch review and merging.

Associating signoffs with employers yields the following:

Developers with the most
non-author signoffs,
since 4.7

Companies associated
with the most signoffs,
since 4.7

“I have spent a lot of time during the last year on fixing hundreds of
smaller bugs that lead to build failures or warnings. I started doing a lot
of build-testing as a way to improve the quality of contributions I merge
into the kernel from other people, but this has now turned into a
separate effort to get all random configurations to build cleanly.”

 - Arnd Bergmann, Linaro

2017 LINUX KERNEL DEVELOPMENT REPORT 21

The signoff metric is a loose indication of review, so the above numbers
need to be regarded as approximations only. Still, one can clearly see that
subsystem maintainers are rather more concentrated than kernel
developers as a whole; over half of the patches going into the kernel pass
through the hands of developers employed by just five companies. Over
the years, the community of subsystem maintainers has become less
concentrated, but it is a slow process.

Daniel Vetter
Staff Engineer, Intel

What’s your role?
Graphics. Former maintainer.

What have you been working on recently?
Lots of documentation updates in graphics. Mentoring new committers
and maintainers. Improving process and community. Some technical stuff
to relax.

Why do you contribute?
It pays well. Within graphics it’s actually fun; outside, the dread often
weighs much heavier.

Linus Walleij
Senior Engineer, Linaro Limited

What’s your role?
I am a subsystem maintainer for the pin control and GPIO subsystems in
the Linux kernel. I also work on assorted ARM devices and sometimes on
the MTP (Media Transfer Protocol) initiator library for userspace, libmtp.

What does the kernel community need to work on?
Moving all legacy block devices to the multiqueue block infrastructure
and delete the old block layer path. Continue to consolidate old
architectures like ARM32 and m68k.

Why do you contribute?
Contributing to the kernel, quite obviously, is ultimately fueled by the
satisfaction of the human consciousness of being recognized for your
talent by equal peers. This is the social psychological mechanism that
drives all intellectual work.

2017 LINUX KERNEL DEVELOPMENT REPORT 22

Reporter # %
kernel test robot 223 5.1%
Dan Carpenter 191 4.4%
Dmitry Vyukov 127 2.9%
Greg Kroah-Hartman 85 1.9%
Andrey Konovalov 82 1.9%
Arnd Bergmann 61 1.4%
Stephen Rothwell 51 1.2%
Ingo Molnár 40 0.9%
Linus Torvalds 36 0.8%
Geert Uytterhoeven 31 0.7%
David Binderman 29 0.7%
Johan Hovold 27 0.6%
Dave Jones 27 0.6%
Ville Syrjälä 26 0.6%
Guenter Roeck 25 0.6%
Colin Ian King 23 0.5%
Borislav Petkov 21 0.5%
Al Viro 21 0.5%
Russell King 20 0.5%
Bart Van Assche 20 0.5%
Julia Lawall 20 0.5%

Top bug reporters,
4.8–4.13

2017 LINUX KERNEL DEVELOPMENT REPORT 23

Bug reporting
A kernel that has had nearly 83,000
patches applied to it will certainly have
a few bugs introduced along with the
new features.

The community depends heavily on a wide community of testers to find
those bugs and report them so that they can be fixed. Kernel conventions say
that, when a patch fixing a bug is applied to the kernel, it should contain
a “Reported-by” tag crediting the tester who found the problem. During
the period covered by this report, just over 4,100 patches carried such tags.
From those tags, we can determine that the most prolific bug reporters
were those at right:

It turns out that the person providing the most bug reports is not a person at
all — it’s the 0-Day test service run by Intel. This service picks up patches from
the mailing lists and tests them, often before they are accepted for inclusion;
as a result, many problems are headed off before they can affect users. Linus
Torvalds appears on this list because he routinely boots the kernel that results
after accepting a pull request. There are few things that move faster than a
kernel developer whose patch has just broken Linus’s work computer.

The list, at right, is certainly incomplete, in that adding the “Reported-by”
tag is an easy step to overlook. Still, it provides a partial picture of the
community of testers that the kernel project relies on to report problems.

https://01.org/lkp/documentation/0-day-test-service

Dan Williams
Software Engineer, Intel

What’s your role?
I am one of the maintainers of the “libnvdimm” sub-system that supports
persistent memory (PMEM) hardware devices. I also contribute to the
development of DAX and other kernel technologies that enable PMEM.

What does the kernel community need to work on?
Accelerate the growth of a unit test culture for Linux kernel development.
There will always be code paths that need hardware and custom
environments, but the libnvdimm unit tests are hopefully an example of
how drivers can be tested absent hardware.

Why do you contribute?
I contribute to the Linux kernel because it is fun. While it is difficult for a
single company to employ all the smartest people, I can reach out to the
kernel development mailing list to debate and collaborate with world
class talent. The debates inevitably make progress because we are always
unified by the common principle of doing what is best for the long term
health of the project. I grow and learn something new almost every time I
make a contribution.

Rafael Wysocki
Software Engineer, Intel

What’s your role?
I am the maintainer of the power management infrastructure and the
ACPI core in the Linux kernel.

What have you been working on recently?
Power management mostly: cpufreq improvements (schedutil governor
and intel_pstate driver improvements) and suspend-to-idle support.

Why do you contribute?
Because I enjoy doing it, I am paid for doing it, and I think that this
project is important for the future of civilization as a whole.

2017 LINUX KERNEL DEVELOPMENT REPORT 24

2017 LINUX KERNEL DEVELOPMENT REPORT 25

Lessons from 26 years of Linux
As was mentioned back at the beginning, the kernel project is by no means young;
it celebrated its 25th anniversary in 2016.

Few development projects have that kind of history, and many of those
that do have long since settled into a “nearly complete” state where
changes are few and far between. The kernel is different, though; after
26 years, this project is more vital and active than at any point in its
history. There have been many academic studies of this development
community, but it still may be many years before we fully understand
the keys to its success. That said, there are a few lessons that stand
out clearly:

• Short release cycles are important.
In the early days of the Linux project, a new major kernel release
only came once every few years. That meant considerable delays in
getting new features to users, which was frustrating to users and
distributors alike. But, more importantly, such long cycles meant that
huge amounts of code had to be integrated at once, and that there
was a great deal of pressure to get code into the next release, even if
it wasn’t ready.

Short cycles address all of these problems. New code is quickly made
available in a stable release. Integrating new code on a nearly
constant basis makes it possible to bring in even fundamental
changes with minimal disruption. And developers know that if they
miss one release cycle, there will be another one in two months, so
there is little incentive to try to merge code prematurely.

2017 LINUX KERNEL DEVELOPMENT REPORT 26

• Process scalability requires a distributed,
hierarchical development model.
Once upon a time, all changes went directly to Linus Torvalds, but
even a developer with his talents cannot keep up with a project
moving as quickly as the kernel. Spreading out the responsibility for
code review and integration across 100 or more maintainers gives
the project the resources to cope with tens of thousands of changes
without sacrificing review or quality.

• Tools matter.
Kernel development struggled to scale until the advent of the
BitKeeper source-code management system changed the
community’s practices nearly overnight; the switch to Git brought
about another leap forward. Without the right tools, a project like
the kernel would simply be unable to function without collapsing
under its own weight.

• The kernel’s strongly consensus-oriented model
is important.
As a general rule, a proposed change will not be merged if a
respected developer is opposed to it. This can be intensely
frustrating to developers who find code they have put months into
blocked on the mailing list, but it also ensures that the kernel remains
suited to a wide ranges of users and problems. No particular user
community is able to make changes at the expense of other groups.
As a result, we have a kernel that scales from tiny systems to
supercomputers and that is suitable for a huge range of uses.

• A related factor is the kernel’s strong “no
regressions” rule.
If a given kernel works in a specific setting, all subsequent kernels
must work there, too. The implementation of this rule is not always

perfect, but it still gives users assurance that upgrades will not break
their systems; as a result, they are willing to follow the kernel as it
develops new capabilities.

• Corporate participation in the process is crucial.
We would not have the fast-moving project described here without
it. But it is also important that no single company dominates kernel
development. While any company can improve the kernel for its
specific needs, no company can drive development in directions that
hurt the others or restrict what the kernel can do.

• There should be no internal boundaries within
the project.
Kernel developers are necessarily focused on specific parts of the
kernel, but any developer can make a change to any part of the
kernel if the change can be justified. As a result, problems are fixed
where they originate rather than being worked around, developers
have a wider view of the kernel as a whole, and even the most
recalcitrant maintainer cannot indefinitely stall needed progress in
any given subsystem.

Above all, 26 years of kernel history show that sustained, cooperative
effort can bring about common resources that no group would have
been able to develop on its own.

Peter Zijlstra
Software Engineer, Intel

What’s your role?
I’m (co-)maintainer of the scheduler, the locking infrastructure, the atomic
op infrastructure, the performance events (kernel) bits, and I think also
the memory model and memory barrier syscall bits, although that’s not in
MAINTAINERS yet.

What does the kernel community need to work on?
In general, people should work on what they’re passionate about. If I
were to have any say in the matter at all, I would ask them to take a little
more time and consider things from a step back.

Why do you contribute?
Because it’s awesome. ;-) That is, you get to meet some very smart
people and get to work together on solving some really fun puzzles. And
the best part is, everybody can join or learn from it; it’s not locked away
in some company vault.

Mimi Zohar
Senior Software Engineer, IBM

What’s your role?
I’m the linux-integrity subsystem maintainer. I work on extending secure and
trusted boot to the running OS. There are a number of dependencies on
other subsystems (e.g., TPM, trusted and encrypted keys, trusted keyrings).

Why do you contribute?
I don’t normally hear about who is using the linux-integrity subsystem or
how they’re using it, only when there are problems. It always surprises
me how and where it is being used.

What have you been working on recently?
We’re working on closing measurement/appraisal gaps. For example, files
read by the kernel should be measured/appraised. This year, we’ve
extended kexec on openPower to carry the IMA measurement list across
kexec to the target OS. This provides a full measurement chain, from
boot up to and including the running target OS.

2017 LINUX KERNEL DEVELOPMENT REPORT 27

2017 LINUX KERNEL DEVELOPMENT REPORT 28

Conclusion
The Linux kernel is one of the largest and most successful open source
projects that has ever come about. The huge rate of change and number
of individual contributors show that it has a vibrant and active community,
constantly causing the evolution of the kernel in response to number of
different environments it is used in. This rate of change continues to
increase, as does the number of developers and companies involved in
the process; thus far, the development process has proved that it is able
to scale up to higher speeds without trouble.

There are enough companies participating to fund the bulk of the
development effort, even if many companies which could benefit from
contributing to Linux have, thus far, chosen not to. With the current
expansion of Linux in the server, desktop, mobile and embedded
markets, it’s reasonable to expect this number of contributing companies
– and individual developers – will continue to increase. The kernel
development community welcomes new developers; individuals or
corporations interested in contributing to the Linux kernel are encouraged
to consult How to Participate in the Linux Community or to contact the
authors of this paper or The Linux Foundation for more information.

https://www.linuxfoundation.org/publications/how-to-participate-in-the-linux-community/

Thanks
The authors would like to thank the thousands of individual kernel
contributors, without them, papers like this would not be interesting
to anyone.

Resources
Many of the statistics in this article were generated by the “gitdm” tool,
written by Jonathan Corbet. Gitdm is distributable under the GNU GPL;
it can be obtained from git://git.lwn.net/gitdm.git.

The information for this paper was retrieved directly from the Linux
kernel releases as found at the kernel.org web site and from the git
kernel repository.

Copyright © 2017 The Linux Foundation®. All rights reserved.
The Linux Foundation has registered trademarks and uses trademarks.
For a list of trademarks of The Linux Foundation, please visit
https://www.linuxfoundation.org/trademark-usage.
Linux is a registered trademark of Linus Torvalds.

License information: This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC-BY-SA 4.0).

git://git.lwn.net/gitdm.git
http://kernel.org
https://www.linuxfoundation.org/trademark-usage

