# **Open Source and Energy Interoperability**

**Digital Technology Impact:** Digital technology alone is projected to generate \$2.1 trillion in annual revenue.



#### **Energy Sector**

**Challenges:** The energy sector needs to meet a 50% increase in demand by 2050 while becoming greener and smarter.



## Promise of Open Source:

Open source technology shows the greatest promise to accelerate the transition to clean energy.



**Microgrids Role:** Microgrids are key for energy access and transition, providing reliable and sovereign electricity. Smart Grid Development: Digitalization involves developing a smart grid with two-way communication and advanced sensors.



**Open Source Benefits:** Open source platforms reduce costs, enhance interoperability, and improve integration across energy systems.





### Standards and Collaboration: There is a need for industry-wide standards to facilitate interoperability and reduce silos.

**Data Sharing Importance:** Open source platforms enable better long-term planning through transparent and real-time data sharing.





Future-Proof Technology: Adopting open source solutions ensures assets

remain adaptable and compatible with evolving standards and technologies.



# Interoperability: IEEE

2030.5 standardizes communication between the smart grid and consumers using open web standards such as TCP/IP and XML. Interoperability solution: The EVerest project empowers industry stakeholders by simplifying compliance while providing a scalable, interoperable foundation for innovation in EV charging.



Interoperability solution: The SPEEDIER project highlights the significant opportunity for open source software & open standards to improve DERs and their integration into smart grid systems.



